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ABSTRACT Ongoing developments in neural network models are continually advancing the state-of-the-
art in terms of system accuracy. However, the predicted labels should not be regarded as the only core
output; also important is a well-calibrated estimate of the prediction uncertainty. Such estimates and their
calibration are critical in many practical applications. Despite their obvious aforementioned advantage in
relation to accuracy, contemporary neural networks can, generally, be regarded as poorly calibrated and as
such do not produce reliable output probability estimates. Furthermore, while post-processing calibration
solutions can be found in the relevant literature, these tend to be for systems performing classification.
In this regard, we herein present two novel methods for acquiring calibrated predictions intervals for
neural network regressors: empirical calibration and temperature scaling. In experiments using different
regression tasks from the audio and computer vision domains, we find that both our proposed methods
are indeed capable of producing calibrated prediction intervals for neural network regressors with any
desired confidence level, a finding that is consistent across all datasets and neural network architectures
we experimented with. In addition, we derive an additional practical recommendation for producing more
accurate calibrated prediction intervals. We release the source code implementing our proposed methods for
computing calibrated predicted intervals.

INDEX TERMS Machine learning, artificial neural networks.

I. INTRODUCTION
Deep learning has undoubtedly improved the state-of-the-
art performance of machine learning models across a variety
of machine learning applications, in terms of overall system
accuracy. In addition, there is an increasing research attention
within the deep learning community on estimating prediction
uncertainty, i. e., recognizing and quantifying when an output
may be incorrect. The estimation of uncertainty can indeed
be crucial for a wide range of applications. For example,
the decisions made by neural network technology deployed in
healthcare settings could have life-threatening consequences.
Uncertainty information could therefore act as a guide for
clinicians or doctors to seek a potentially life saving advice.

For a regression problem, uncertainty of a model out-
put can be estimated using prediction intervals – estimates
of the interval in which the target label is expected to lie

within a prescribed probability. Standard neural network
regressors output a point estimation [1]–[3], from which the
estimation of calibrated prediction intervals is a non-trivial
task. Other neural network regressors use a technique which
poses the regression task as a classification task, with a
softmax output that produces a posterior distribution over the
output space [4], [5]. Using this method, one could compute
prediction intervals for a given confidence level α, simply by
taking an interval in the output space that contains α of the
posterior probability mass, as illustrated in Figure 1.
However, an interval in the output space that contains α of

the posterior probability mass does not have to correspond to
a probability of α that the label will fall within this interval’s
boundaries. For example, a neural network making overcon-
fident predictions may tend to concentrate α of the poste-
rior probability mass in small intervals of the output space,
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FIGURE 1. A neural network regressor designed as a softmax classifier.
By binning the output space into M bins, one can design a neural
network regressor as a softmax classifier over M classes, and derive a
posterior distribution over the output space instead of a single point
estimate. This allows emitting prediction intervals that contain a
prescribed amount of the posterior probability mass. However, we show
that the resulting prediction intervals will normally be miscalibrated, i. e.,
will not correspond to the desired confidence level.

while the probability that these intervals contain the actual
labels can be considerably lower. In this case, we say that
the prediction intervals are miscalibrated. Recent work has
shown that the outputs of modern neural network classifiers
are miscalibrated in the sense that posterior class probabilities
do not reflect actual correctness probabilities [6]. Therefore,
when using neural network regressors that are designed as
such classifiers, we expect the resulting prediction intervals
to be miscalibrated as well.
Neural network models have not always been considered

miscalibrated. Indeed, work presented in [6] and [7] identi-
fied pre-modern neural network models as a good learning
paradigm in terms of producing well-calibrated probabilities
for binary classification tasks. It has been demonstrated that
the poor calibration levels observed in more contemporary
deep topologies have come about through recent changes
in network architecture and training procedures [6]. For
example, miscalibration has been associated with increases
in model capacity, and has also been observed in networks
trained with batch normalization or a minimal amount of
weight decay [6].
Despite network calibration being a more recent prob-

lem for neural nets, calibration and confidence estimation
themselves are not new problems, e. g., [8]–[15]. More
recently, a plethora of calibration and uncertainty quan-
tification approaches have been proposed and developed
for contemporary neural networks in the wider machine
learning community. Bayesian Neural Networks produce a
probabilistic relationship between the network input and
output [16], [17], but often suffer from tractability issues.
Ensemble based approaches, bootstrapping, andMonte Carlo
based approaches have also been proposed, for example
[18]–[21].While such approaches can produce calibrated pre-
diction intervals, they often require training and testing amul-
titude of different individual networks which considerably

increases the associated time and computational costs [22].
Closely related to the current work, a range of post-processing
calibration tasks of neural network classifiers were evaluated
for a range of different networks topologies [6]. The authors
found some of the evaluatedmethods to successfully calibrate
the outputs of the classificationmodels, but counterpart meth-
ods for producing calibrated prediction intervals for neural
network regressors are still absent.
Motivated by the above, in this work we present two novel

methods for producing calibrated prediction intervals for neu-
ral network regressors, at any desired confidence level. Both
of our proposed methods are performed as post-processing
of the outputs of a the trained regression model that uses a
softmax classification layer, therefore do not require retrain-
ing of the model, and are very fast to compute. Our first
proposed method, empirical calibration, assesses the amount
of the model’s posterior probability mass that corresponds in
practice to the desired confidence level. Our second proposed
method, temperature scaling, is an adaptation of a related
method proposed in [6] for calibrating classification models,
to the regression and prediction intervals setting. Temperature
scaling tunes the smoothness of the model’s output distri-
bution, to find a balance that results in calibrated prediction
intervals.
We corroborate our proposed methods in experiments with

four regression tasks from the audio and computer vision
domains. We first find that as expected, using neural network
classifiers to perform regression, and obtaining prediction
intervals by taking an interval in the output space that contains
the desired posterior probability mass, results in prediction
intervals that are poorly calibrated. On the contrary, we find
that applying our proposed calibration methods yields predic-
tion intervals that are considerably better calibrated, a finding
that is consistent across all datasets, neural network architec-
tures and confidence levels we experimented with.
Further, we find that when splitting the output space into

a finite number of bins, using a larger number of bins and
applying our proposed methods results in calibrated predic-
tion intervals that are tighter, i.e., a more accurate estimation
of the range in which the label may fall. Finally, we validate
that using neural network classifiers to perform regression
does not cause any degradation in regression performance,
as measured by mean squared error. We conclude that both of
are proposed methods are appropriate for emitting calibrated
prediction intervals for neural network regressors. We make
the source code using empirical calibration and temperature
scaling for computing calibrated predicted intervals publicly
available.1

The rest of this paper is laid out as follows. In Section II
we present how regression can be performed using neural
network classifiers, and how (not calibrated) prediction inter-
vals can be obtained; Section II-B then presents the two
proposed calibration methods. The experimental results on
the different tasks are presented in Section III, and finally

1code available in http://github.com/cruvadom/prediction_intervals
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a brief conclusion and our future work plans are given in
Section IV.

II. ACQUIRING PREDICTION INTERVALS
A. POSTERIOR PREDICTION INTERVALS
We consider neural network regressors that process an input
x ∈ Rn with an associated label y ∈ R. For a regression task,
the standard neural network contains a top layer with only one
unit [1]–[3]. The single value in the output of this top layer
is then used together with the ground-truth label to compute
the mean squared error, which is the training objective of the
network. Using this standard design, the network only outputs
a single point estimate, and there is no obvious way to use the
network’s output for computing prediction intervals.

In contrast, a natural approach for designing neural net-
works regressors from which prediction intervals can be
derived, is to construct a regressor that emits a probability
distribution px over the real numbers, and use this distribu-
tion to define intervals with a certain level of probability
mass. Denoting Ŷx as a real-valued random variable that is
distributed according to px , we define the notion of posterior
prediction intervals:
Definition 1: The interval (ux , vx) is called posterior

α-prediction interval if

P[u(x) < Ŷx < v(x)] = α and u(x) < E[Ŷx] < v(x).
The posterior prediction interval (ux , vx) is simply an interval
around the expected prediction of the network E[Ŷx] that is
designed to contain a probability mass of α from the net-
work’s output distribution px . We refer to α as the confidence
level of the interval.
With the aim of emitting a probability distribution over

the real numbers, neural network regressors can be designed
similarly to conventional neural network classifiers, as was
done in [4] and [5]. The real numbers are divided into a finite
number of bins M with edges

−∞ = a0 < a1 < . . . < aM = ∞,

and for the training procedure each real-valued label y is
replaced with the appropriate class label t ∈ {0, . . . ,M − 1}
such that

at ≤ y < at+1.

The single unit top layer of the standard neural network
regressors is replaced with a layer of M − 1 units. Softmax
normalization is then applied on the output of the top layer
and the network is trained as a standard neural network
classifier with the cross-entropy loss. The output of such a
neural network is a vector of class probabilities

(pr0, . . . , prM−1).

To emit a probability distribution over the real numbers,
we can distribute each class probability uniformly, or accord-
ing to the distribution of training set real-valued labels,
between the class’s bin boundaries.

Posing the regression problem as a classification problem
allows the network to emit a distribution over the real num-
bers instead of a point estimate, which in turn can be used to
calculate posterior α-prediction intervals.

B. CALIBRATED PREDICTION INTERVALS
In Section II-A we described how neural network regressors
can be designed in a manner that allows emitting posterior α-
prediction intervals. However, the confidence level α does not
guarantee that the label is likely to fall within its appropriate
posterior prediction interval with probability α. For example,
consider the case of a neural network that produces overly
confident predictions. In this case, the output probability dis-
tribution px will have most of its mass concentrated in a small
region, therefore prediction intervals containing a mass of α
of the network’s output probability distribution will be very
narrow. However, despite the confident predictions, the actual
ground-truth labels might fall within the boundaries of those
intervals on average only α0 of the times, with α0 < α.
Equivalently, the confidence level α may also not represent
the actual probability of the label falling within the prediction
interval’s boundaries in the case of network predictions that
are not confident enough.
Ideally, onewould aspire to obtain prediction intervals with

a confidence level of α, such that α is the actual probability
of the label falling within the prediction interval’s boundaries.
We define the notion of calibrated prediction intervals:
Definition 2: A set of intervals {(ux , vx)}x∈X is considered

as calibrated α-prediction intervals if

Px,y∼X ,Y [ux < y < vx] = α,

where X ,Y corresponds to the joint distribution of inputs and
labels of the given regression task.
We refer to α as the confidence level of the calibrated

prediction intervals. In regression analysis, a calibrated pre-
diction interval is an estimate of an interval in which the label
will lie, with a certain probability α. Calibrated prediction
intervals capture information about the uncertainty of the pre-
dicted value across the output space, and convey information
that is absent from a single point estimate of the label, that
might be critical for a wide range of practical applications.
In recent work, it was shown that modern neural network

classifiers tend to produce non-calibrated outputs, i. e., the
posterior probability assigned to predictions does not cor-
respond to the actual ground-truth accuracy of these pre-
dictions [6]. Therefore, when using neural network regres-
sors that are constructed as classifiers, and using those to
emit posterior α-prediction intervals, we cannot expect those
posterior α-prediction intervals to be calibrated α-prediction
intervals. In Section III we show that indeed in practice,
the obtained posterior α-prediction intervals are not cali-
brated α-prediction intervals.
Below we present the main novel contribution of this

work, two methods for computing calibrated α-prediction
intervals for neural network regressors. Consider the neu-
ral network regressors designed as classifiers described
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in Section II-A. Recall that in this setting we divide the real
numbers intoM bins, and given an input x, a regressor emits
a categorical probability distribution over the different bins:
(pr0, . . . , prM−1).

We compute the network’s real-valued prediction (point
estimate) as the expected prediction with respect to the emit-
ted class probability distribution:

ŷ =
M−1∑
i=0

pri ∗ ci, (1)

where ci is the mean of real-valued labels of all training
examples with class label i. We denote the class that contains
ŷ (according to its bin’s edges) with t̂:

t̂ = r s.t. ar ≤ ŷ ≤ ar+1. (2)

For computing posterior α-prediction intervals, we take
the smallest symmetric interval around t̂ that contains α of
the neural network’s posterior probability mass. Formally,
we take the posterior α-prediction interval to be

(uαx , v
α
x ) = (at̂−i, at̂+1+i), (3)

such that i is the minimal non-negative integer (possibly zero)
for which

prt̂−i + . . .+ prt̂+i ≥ α. (4)

Note that we restrict the endpoints of the interval to be the
discrete bins edges, therefore the condition from Definition 1
only holds approximately.
In the rest of this section we describe our two proposed

novel methods for calibrating the prediction intervals. Both
methods apply post-processing to the outputs of a trained neu-
ral network, and do not require retraining the neural network.
The hyperparameters of the methods are to be chosen using
a validation set, and the chosen values should then be used
when applying the methods to the test set predictions.

1) EMPIRICAL CALIBRATION
We first observe that posterior α0-prediction intervals
(uα0x , v

α0
x ) as defined according to (3) are actually calibrated

α1-prediction intervals for

α1 = Px,y∼X ,Y [uα0x < y < vα0x ]. (5)

This holds because for every set of prediction intervals, there
is an actual probability of the label falling within the bound-
aries of those intervals. Therefore by definition those are
calibrated prediction intervals with this probability as their
confidence level.

When calibrating the prediction intervals empirically,
we want to find α0 such that the posterior α0-prediction
intervals are calibrated α-prediction intervals, for a desired
confidence level α. Note that Px,y∼X ,Y [uα0x < y < vα0x ] is
increasing in α0 with fixed points in 0 and 1, since larger
posterior prediction intervals necessarily mean that the label
is more likely to fall within the intervals’ boundaries.

Therefore, our empirical calibration method is comprised
of a binary search along different values of α0 ∈ [0, 1] to
find α0 such that |Px,y∼X ,Y [uα0x < y < vα0x ] − α| < ε on the
validation set, for a given error tolerance ε. In our experiments
we use ε = 0.001. The error tolerance is necessary, since for
a finite validation set finding calibrated prediction intervals
with confidence level exactly α may be impossible. The α0
that we end up with is the one that is used for computing
prediction intervals on for the test set.

2) TEMPERATURE SCALING
When training the neural network for the classification task,
class probabilities (pr0, . . . , prM−1) are computed from the
output of the top layer (z0, . . . , zM−1) using the softmax
function:

pri =
exp(zi/T )

M−1∑
j=0

exp(zj/T )

, (6)

where T is called the softmax temperature. During training,
the default temperature T = 1 is used. Equation 6 can be
written as

pri =
1

M−1∑
j=0

exp((zj − zi)/T )

, (7)

that shows that the output of the softmax normalization
depends only on the the temperature T and the differences
between the output values (z0, . . . , zM−1). Therefore, scaling
the outputs of the top layer before applying the softmax
function affects the smoothness of the output probability
distribution. Specifically, using a lower temperature 0 < T <
1 makes the probability distribution ‘‘pointier’’, i. e., more
probability mass is given to the classes with higher z values.
On the contrary, using a larger temperature 1 < T < ∞

tends towards distributing the probability mass more evenly
between the different classes.
Using this property of the softmax normalization function,

temperature scaling uses a different temperature at evalua-
tion time for computing class probabilities. A network that
produces overconfident predictions, will result in posterior α-
prediction intervals that are too narrow, i. e., Px,y∼X ,Y [uαx <
y < vαx ] < α. In this case, temperature scaling with a
temperature T > 1 can be applied to reduce the network’s
confidence, and increase the width of the posterior prediction
intervals. Equivalently, a low temperature 0 < T < 1 should
be used to increase the network’s confidence and decrease the
width of posterior prediction intervals.
More generally, we define

Fα(T ) = Px,y∼X ,Y [uαx < y < vαx ] (8)

where uαx and vαx are the posterior α-prediction intervals
that now depend also on T . As increase in T increases
the width of the posterior prediction intervals, the function
Fα(T ) is continuous and monotonic increasing in T , with
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limT→0 Fα(T ) = 0 and limT→∞ Fα(T ) = 1. Therefore, there
must be a temperature T such that Fα(T ) = α.

Motivated by the above theoretical properties, our temper-
ature scaling method is comprised of a binary search along
different values of T to find the temperature value such that

|Fα(T )− α| < ε (9)

on the validation set, for the desired confidence level α and a
given error tolerance of ε. In our experiments we use an error
tolerance ε = 0.001 that is again necessary, since for a finite
validation set finding calibrated prediction intervals with con-
fidence level exactly α may be impossible. The temperature
T that is chosen using the validation set is then used for
computing prediction intervals for the test set. Temperature
scaling was used in [6] for calibrating the output probabilities
of neural network classifiers, and here we extend this method
to the regression and prediction intervals setting.

III. EXPERIMENTS
We evaluated our two proposed calibration methods for pre-
diction intervals on four different regression tasks from the
audio and computer vision domains.

A. DATASETS AND TASKS
We describe the four regression tasks and datasets we used in
our experiments.

1) AGE PREDICTION (AUDIO)
The first task we consider is the prediction speakers’ age
based on a recording of their speech, using the aGender cor-
pus [23], [24]. The aGender corpus contains audio recordings
of predefined utterances and natural speech, annotated for the
speakers’ age and gender. We split the corpus into speaker
independent training, validation and test sets, according to
the split used in [25]. In total, the three sets contain more
than 38 hours of audio, in more than 53,000 utterances. The
total number of speakers is 611, such that 331 speakers are
assigned to the training set, 140 to the validation set, and
299 to the test set. We extracted Mel-Frequency Cepstrum
Coefficients (MFCC) features from each recordings, using
frames of 25ms shifted by 10ms. From every frame 13 fea-
tures were extracted.We applied mean and standard deviation
normalization across features and time, for every recording
separately.

2) SNR PREDICTION
The second regression task from the audio domain
we experimented with is prediction of Signal-to-Noise
Ratio (SNR) of speech audio utterances with background
noise. For constructing this task’s corpus, we used clean
speech utterances from the degree of nativeness corpus
from the INTERSPEECH 2016 computational paralinguis-
tics challenge [26], [27] and background noise recordings
from the CHiME-4 challenge [28]. The native language
corpus contains more than 64 hours of clean speech utter-
ances from 5,132 speakers of 11 different native languages,

split into speaker independent training, validation, and test
sets. The background noises are recordings of four different
environments: bus, café, pedestrian area, street junction, and
are 14 hours in total. For creating the training set, training
speech utterances were mixed with random segments of the
background noises according to a random SNR in the range
[0, 25]. The SNR was then used as the real-valued label for
the regression task. The validation and test set were created
in a similar manner, using the corresponding clean utterances
from the native language corpus and dedicated portions of
the noise recordings. We applied a short-time Fourier trans-
form (STFT) on every recording to extract 201 magnitude
spectrogram features from every 25ms frame, where frames
are shifted 10ms. The magnitude spectrogram features were
then normalized across features and time, for every utterance
separately, to have a mean of 0 and a standard deviation of 1.

3) AGE PREDICTION (IMAGES)
The first dataset we experimented with in the computer vision
domain is the Wikipedia faces dataset [29]. The dataset con-
tains 62,359 images of people (one image per person) crawled
from Wikipedia, labeled with the age of each person at the
time the picture was taken. Since the dataset has no official
training/validation/test split, we randomly allocated 60% of
the examples to the training set, 20% to the validation set and
20% to the test set. As the dimensions of the different images
vary, we resized every image to 224 × 224 pixels before
feeding it to the neural network. In addition, we normalized
pixel values for every image separately, to have a mean of 0
and a standard deviation of 1.

4) ISO SPEED PREDICTION
The second images dataset we experimented with is
the MIRFLICKR-25000 dataset. The MIRFLICKR-25000
dataset consists of 25,000 images downloaded from the social
photography site Flickr through its public API [30]. In addi-
tion to images, the dataset contains additional metadata on
every image, such as the ISO speed, that measures the sensi-
tivity of the camera’s film or sensor to light. The ISO speed
affects the brightness of photos, therefore a regression task
for predicting the ISO speed of given images is sensible.
We split the dataset and extracted features in the same way
as described in Section III-A3.

B. NEURAL NETWORKS
As described in Section II, we learn the regression tasks using
a classification neural network, where the real numbers are
split intoM bins. For the audio experiments, the network we
used is comprised of two long short-term memory (LSTM)
layers, each with 512 units. The output of the last time step
in the top layer is fed into the fully-connected output layer,
with the number of units equal to the number of bins we use.
Softmax normalization is applied to the output layer’s units.
For the computer vision experiments, we used a convo-

lutional neural net (CNN) that is comprised of 8 residual
blocks [2]. Each residual block first applies a convolutional
layer on the input, followed by batch normalization [31] and
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a rectified linear activation function. A second convolutional
layer is then applied on the output of the rectified linear
activation, and the output is added to the block’s input. Batch
normalization and another rectified linear activation are then
applied, to emit the output of the residual block. Before
applying the residual blocks, a convolutional layer with a 7×7
kernel is applied on the network’s input, with a 2×2 stride and
64 feature maps. The output of this convolutional layer is fed
to the a sequence of 8 residual blocks, all using convolutional
kernel size of 3× 3 and 64,64,128,128,256,256,512,512 fea-
ture maps (one value for each residual block). A 2× 2 stride
is applied for residual blocks number 3, 5 and 7. A global
average pooling is applied on the output of the last residual
block, to average each of the 512 feature maps across all
spatial locations. Similarly to the audio experiments, a fully-
connected layer is then applied to project the 512 dimensional
vector to the relevant number of bins, and a softmax normal-
ization is applied.
In all experiments, the training objective is the standard

cross-entropy, and model parameters are learnt using the
Adam optimiser [32] with default β1, β2 values and a learn-
ing rate of 0.001. We experimented with binning the real
numbers into M = 10, 30, 60 bins to demonstrate that our
method can operate successfully regardless of the number
of bins, and to study the differences between the resulting
prediction intervals with different number of bins. For a given
number of classes M , we set class boundaries a0, . . . , aM to
be equally spaced between the minimum and maximum real-
valued label values in the training set, and then set a0 = −∞
and aM = ∞.

C. CALIBRATION RESULTS
For the main results of this work, we evaluated each of
the two proposed calibration methods from Section II-B on
the different regression tasks, with different neural network
architectures and different number of bins. For each task,
we trained three neural networks with 10, 30 and 60 bins.
Each of the proposed calibration methods was applied to
the outputs of each trained network using confidence levels
of 66%, 80% and 90%. For each calibration method and
dataset, the associated hyperparameters were chosen using
the validation set, then we applied this calibration method to
the test set using the chosen hyperparameters. All results we
report are on the test set.

The aim of each calibrationmethod is to produce calibrated
α-prediction intervals. To assess the level in which this goal
was achieved, we measure the calibration error, which is
the absolute difference between the desired confidence level
α and the actual probability of the label falling within the
boundaries of the acquired prediction intervals. Mathemati-
cally, the calibration error is defined as

|Px,y∼X ,Y [u(x) < y < v(x)]− α|, (10)

where (u(x), v(x)) is the prediction interval emitted by the
calibration method for example x, and X ,Y are distributed
uniformly over the test set examples.

TABLE 1. A comparison of test set calibration error ([%]) before
(‘Posterior’ column) and after applying each of the the two proposed
calibration methods for the different regression tasks. ‘Empirical’, ‘Temp’
and ‘Confidence’ columns represent empirical calibration, temperature
scaling and the prediction intervals’ confidence level respectively. In all
cases, both of the proposed methods manage to considerably reduce the
calibration error of prediction intervals, compared to prediction intervals
based on the networks’ posterior distribution (smaller numbers on the
right side of the dashed line). Both of the proposed methods yield
comparable performance. This result holds when training the network
with either 10, 30 or 60 bins, with no clear advantage for a specific
number of bins.

A comparison of the calibration error when using the
posterior prediction intervals, and after applying each of the
two proposed calibration methods is given in Table 1. First,
we observe that the posterior prediction intervals, without
applying a calibration method, generally yield a large cali-
bration error. This finding is consistent with findings from [6]
regarding the miscalibration of modern neural network clas-
sifiers. Second, we see that in all cases, both the empirical
calibration and temperature scaling methods manage to con-
siderably reduce the calibration error, eliminating the cal-
ibration error to small levels of normally around 0%-2%.
These results indicate that using these methods, calibrated
prediction intervals for neural network regressors can indeed
be acquired. Moreover these findings hold across all datasets,
confidence levels, and number of bins used for training the
networks.
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TABLE 2. A comparison of the test set average width of prediction
intervals using the two proposed calibration methods, empirical
calibration and temperature scaling. ‘Empirical’, ‘Temperature’ and
‘Confidence’ columns represent empirical calibration, temperature scaling
and the prediction intervals’ confidence level respectively. For all datasets
except ‘Age (Audio)’, training the network with more bins generally results
in tighter prediction intervals, since the network can learn a more precise
distribution of posterior probability (numbers in the 30 and 60 bins rows
are generally smaller than in the 10 bins rows). The width of the intervals
is comparable between the two calibration methods and naturally grows
with the confidence level. Finally, the width of the intervals naturally
depends on the performance of the neural network in the regression
task.

However, even when using one of the two proposed cal-
ibration methods, calibration error does not vanish com-
pletely. The reason for this is that calibration hyperparameters
were chosen on the validation set, and do not generalize
perfectly to the test set. Nevertheless, a calibration error
of 1%-2% is sufficiently enough for the majority of appli-
cations (e.g., a confidence level of 81% instead of a desired
80% will not make a large difference in most applications).
Both calibration methods yield comparable performance, and
are fast to execute, typically around 1-3 seconds for a test
set of 10000 examples, depending on the number of bins
used.
Further, we compare the width of the emitted prediction

intervals for the empirical calibration and temperature scaling
methods. Table 2 contains the average width of the predic-
tion intervals for test sets of the different regression tasks.

TABLE 3. Performance in the different regression tasks as measured by
the root MSE, for a standard neural network regressor and a neural
network classifier with different number of classes. The performance of
the standard regressors is comparable to the performance of the models
performing regression using a classification models. This indicates that
using neural network classifiers to perform regression task, that allow
emitting calibrated prediction intervals, does not cause any degradation
in the regression performance.

Posterior prediction intervals were above to be poorly cali-
brated, therefore their width is not meaningful with respect to
the desired confidence level, and we omit them from Table 2.
We first observe that naturally, the width of the interval grows
with the desired confidence level. The main conclusion that
can be derived from these results is that networks trained
using a larger number of bins tend to produce tighter predic-
tion intervals. Specifically, for all tasks except age prediction
from audio signal, the width of the resulting calibrated predic-
tion intervals is generally smaller when using 30 or 60 bins,
compared to 10 bins. The reason for this phenomenon is that
a larger number of bins allows the network a more precise
allocation of posterior probability mass.
Additionally, we find that the two calibration methods

produce prediction intervals of a comparable width, with no
prominent advantage for neither of the two methods. This
result indicates that both methods can be interchangeably
used to produce calibrated prediction intervals of the same
quality. Lastly, we note that width of the prediction intervals
is closely affected by the quality of the regressor that they
are based on. A better neural network regressor is one that
assigns a higher probability mass around the correct labels,
which will in turn result in tighter prediction intervals.

D. REGRESSION RESULTS
For studying the the effect of performing the regression
tasks using neural network classifiers, we additionally train
a standard neural network regressor for each of the tasks. For
each task the standard neural network regressor is trained
with an identical architecture to the corresponding neural
network classifier for this task, except the topmost layer that
contains only a single unit, as described in Section II. The
regressor is trained with the same optimiser as the classifiers
to minimize the mean squared error (MSE) between the
network’s predictions and the labels. For the classification
models, MSE is computed using the prediction ŷ defined
in Eq. 1.

The root MSE on the test set for the different models is
found in Table 3. The results in the table show that regres-
sion performance of the standard regressor and the clas-
sifiers is generally comparable on all tasks. We therefore
conclude that training neural network regressors using neural
network classifiers, that allow emitting calibrated prediction
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intervals, does not cause any degradation in the regression
task performance.

IV. CONCLUSIONS
The output of contemporary neural networks, despite being
highly accurate in many circumstances, can be considered
miscalibrated, thereby producing unreliable output probabil-
ity estimates [6]. This issue is exacerbated in regression,
in which the output of a standard neural network regressor
is a point estimate of the predicted values.

By posing neural network regression as a multi-class clas-
sification problem and introducing two novel post-processing
calibration methods, we demonstrated that it is possible
to produce well-calibrated prediction intervals for neural
network regression, that can be critical for a large variety
of real-world application. We find that our proposed meth-
ods were fast to execute and produce calibration prediction
intervals for any desired confidence level, across a vari-
ety of regression tasks from the audio and computer vision
domains and different neural network architectures. In addi-
tion, we found that using a larger number of classification
bins generally resulted in tighter prediction intervals, and
importantly, that using our proposed methods does not cause
any degradation in regression performance, as measured by
the mean squared error.
Future work includes exploring alternative training mech-

anisms that will lead to tighter calibrated prediction inter-
vals [33], [34], embedding the calibrated outputs into the
decision making process of more complex models such
as [35], and applying the proposed methods to a variety of
applications such as computational paralinguistics [36]–[38].
Further, given the complication when performing regres-
sion fusion associated with effects such as multicollinearity,
we also plan to test our approach to aid late fusion of multiple
neural network regressors.
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