467 research outputs found

    Computing Bounds on Network Capacity Regions as a Polytope Reconstruction Problem

    Get PDF
    We define a notion of network capacity region of networks that generalizes the notion of network capacity defined by Cannons et al. and prove its notable properties such as closedness, boundedness and convexity when the finite field is fixed. We show that the network routing capacity region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. We define the semi-network linear coding capacity region, with respect to a fixed finite field, that inner bounds the corresponding network linear coding capacity region, show that it is a computable rational polytope, and provide exact algorithms and approximation heuristics. We show connections between computing these regions and a polytope reconstruction problem and some combinatorial optimization problems, such as the minimum cost directed Steiner tree problem. We provide an example to illustrate our results. The algorithms are not necessarily polynomial-time.Comment: Appeared in the 2011 IEEE International Symposium on Information Theory, 5 pages, 1 figur

    On Network Coding Capacity - Matroidal Networks and Network Capacity Regions

    Get PDF
    One fundamental problem in the field of network coding is to determine the network coding capacity of networks under various network coding schemes. In this thesis, we address the problem with two approaches: matroidal networks and capacity regions. In our matroidal approach, we prove the converse of the theorem which states that, if a network is scalar-linearly solvable then it is a matroidal network associated with a representable matroid over a finite field. As a consequence, we obtain a correspondence between scalar-linearly solvable networks and representable matroids over finite fields in the framework of matroidal networks. We prove a theorem about the scalar-linear solvability of networks and field characteristics. We provide a method for generating scalar-linearly solvable networks that are potentially different from the networks that we already know are scalar-linearly solvable. In our capacity region approach, we define a multi-dimensional object, called the network capacity region, associated with networks that is analogous to the rate regions in information theory. For the network routing capacity region, we show that the region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. For the network linear coding capacity region, we construct a computable rational polytope, with respect to a given finite field, that inner bounds the linear coding capacity region and provide exact algorithms and approximation heuristics for computing the polytope. The exact algorithms and approximation heuristics we present are not polynomial time schemes and may depend on the output size.Comment: Master of Engineering Thesis, MIT, September 2010, 70 pages, 10 figure

    On network coding capacity : matroidal networks and network capacity regions

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 68-70).One fundamental problem in the field of network coding is to determine the network coding capacity of networks under various network coding schemes. In this thesis, we address the problem with two approaches: matroidal networks and capacity regions. In our matroidal approach, we prove the converse of the theorem which states that, if a network is scalar-linearly solvable then it is a matroidal network associated with a representable matroid over a finite field. As a consequence, we obtain a correspondence between scalar-linearly solvable networks and representable matroids over finite fields in the framework of matroidal networks. We prove a theorem about the scalar-linear solvability of networks and field characteristics. We provide a method for generating scalar-linearly solvable networks that are potentially different from the networks that we already know are scalar-linearly solvable. In our capacity region approach, we define a multi-dimensional object, called the network capacity region, associated with networks that is analogous to the rate regions in information theory. For the network routing capacity region, we show that the region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. For the network linear coding capacity region, we construct a computable rational polytope, with respect to a given finite field, that inner bounds the linear coding capacity region and provide exact algorithms and approximation heuristics for computing the polytope. The exact algorithms and approximation heuristics we present are not polynomial time schemes and may depend on the output size.by Anthony Eli Kim.M.Eng

    Quantitative constraint-based computational model of tumor-to-stroma coupling via lactate shuttle

    Get PDF
    Cancer cells utilize large amounts of ATP to sustain growth, relying primarily on non-oxidative, fermentative pathways for its production. In many types of cancers this leads, even in the presence of oxygen, to the secretion of carbon equivalents (usually in the form of lactate) in the cell’s surroundings, a feature known as the Warburg effect. While the molecular basis of this phenomenon are still to be elucidated, it is clear that the spilling of energy resources contributes to creating a peculiar microenvironment for tumors, possibly characterized by a degree of toxicity. This suggests that mechanisms for recycling the fermentation products (e.g. a lactate shuttle) may be active, effectively inducing a mutually beneficial metabolic coupling between aberrant and non-aberrant cells. Here we analyze this scenario through a large-scale in silico metabolic model of interacting human cells. By going beyond the cell-autonomous description, we show that elementary physico- chemical constraints indeed favor the establishment of such a coupling under very broad conditions. The characterization we obtained by tuning the aberrant cell’s demand for ATP, amino-acids and fatty acids and/or the imbalance in nutrient partitioning provides quantitative support to the idea that synergistic multi-cell effects play a central role in cancer sustainmen

    An Algorithmic Theory of Dependent Regularizers, Part 1: Submodular Structure

    Full text link
    We present an exploration of the rich theoretical connections between several classes of regularized models, network flows, and recent results in submodular function theory. This work unifies key aspects of these problems under a common theory, leading to novel methods for working with several important models of interest in statistics, machine learning and computer vision. In Part 1, we review the concepts of network flows and submodular function optimization theory foundational to our results. We then examine the connections between network flows and the minimum-norm algorithm from submodular optimization, extending and improving several current results. This leads to a concise representation of the structure of a large class of pairwise regularized models important in machine learning, statistics and computer vision. In Part 2, we describe the full regularization path of a class of penalized regression problems with dependent variables that includes the graph-guided LASSO and total variation constrained models. This description also motivates a practical algorithm. This allows us to efficiently find the regularization path of the discretized version of TV penalized models. Ultimately, our new algorithms scale up to high-dimensional problems with millions of variables

    Some phenomenological investigations in deep learning

    Full text link
    Les remarquables performances des réseaux de neurones profonds dans de nombreux domaines de l'apprentissage automatique au cours de la dernière décennie soulèvent un certain nombre de questions théoriques. Par exemple, quels mecanismes permettent à ces reseaux, qui ont largement la capacité de mémoriser entièrement les exemples d'entrainement, de généraliser correctement à de nouvelles données, même en l'absence de régularisation explicite ? De telles questions ont fait l'objet d'intenses efforts de recherche ces dernières années, combinant analyses de systèmes simplifiés et études empiriques de propriétés qui semblent être corrélées à la performance de généralisation. Les deux premiers articles présentés dans cette thèse contribuent à cette ligne de recherche. Leur but est de mettre en évidence et d'etudier des mécanismes de biais implicites permettant à de larges modèles de prioriser l'apprentissage de fonctions "simples" et d'adapter leur capacité à la complexité du problème. Le troisième article aborde le problème de l'estimation de information mutuelle en haute, en mettant à profit l'expressivité et la scalabilité des reseaux de neurones profonds. Il introduit et étudie une nouvelle classe d'estimateurs, dont il présente plusieurs applications en apprentissage non supervisé, notamment à l'amélioration des modèles neuronaux génératifs.The striking empirical success of deep neural networks in machine learning raises a number of theoretical puzzles. For example, why can they generalize to unseen data despite their capacity to fully memorize the training examples? Such puzzles have been the subject of intense research efforts in the past few years, which combine rigorous analysis of simplified systems with empirical studies of phenomenological properties shown to correlate with generalization. The first two articles presented in these thesis contribute to this line of work. They highlight and discuss mechanisms that allow large models to prioritize learning `simple' functions during training and to adapt their capacity to the complexity of the problem. The third article of this thesis addresses the long standing problem of estimating mutual information in high dimension, by leveraging the scalability of neural networks. It introduces and studies a new class of estimators and present several applications in unsupervised learning, especially on enhancing generative models
    • …
    corecore