22,495 research outputs found

    Computing Bits of Algebraic Numbers

    Full text link
    We initiate the complexity theoretic study of the problem of computing the bits of (real) algebraic numbers. This extends the work of Yap on computing the bits of transcendental numbers like \pi, in Logspace. Our main result is that computing a bit of a fixed real algebraic number is in C=NC1\subseteq Logspace when the bit position has a verbose (unary) representation and in the counting hierarchy when it has a succinct (binary) representation. Our tools are drawn from elementary analysis and numerical analysis, and include the Newton-Raphson method. The proof of our main result is entirely elementary, preferring to use the elementary Liouville's theorem over the much deeper Roth's theorem for algebraic numbers. We leave the possibility of proving non-trivial lower bounds for the problem of computing the bits of an algebraic number given the bit position in binary, as our main open question. In this direction we show very limited progress by proving a lower bound for rationals

    Near-Optimal Complexity Bounds for Fragments of the Skolem Problem

    Get PDF
    Given a linear recurrence sequence (LRS), specified using the initial conditions and the recurrence relation, the Skolem problem asks if zero ever occurs in the infinite sequence generated by the LRS. Despite active research over last few decades, its decidability is known only for a few restricted subclasses, by either restricting the order of the LRS (upto 4) or by restricting the structure of the LRS (e.g., roots of its characteristic polynomial). In this paper, we identify a subclass of LRS of arbitrary order for which the Skolem problem is easy, namely LRS all of whose characteristic roots are (possibly complex) roots of real algebraic numbers, i.e., roots satisfying x^d = r for r real algebraic. We show that for this subclass, the Skolem problem can be solved in NP^RP. As a byproduct, we implicitly obtain effective bounds on the zero set of the LRS for this subclass. While prior works in this area often exploit deep results from algebraic and transcendental number theory to get such effective results, our techniques are primarily algorithmic and use linear algebra and Galois theory. We also complement our upper bounds with a NP lower bound for the Skolem problem via a new direct reduction from 3-CNF-SAT, matching the best known lower bounds
    • …
    corecore