2,098 research outputs found

    NEPTUNE_CFD High Parallel Computing Performances for Particle-Laden Reactive Flows

    Get PDF
    This paper presents high performance computing of NEPTUNE_CFD V1.07@Tlse. NEPTUNE_CFD is an unstructured parallelized code (MPI) using unsteady Eulerian multi-fluid approach for dilute and dense particle-laden reactive flows. Three-dimensional numerical simulations of two test cases have been carried out. The first one, a uniform granular shear flow exhibits an excellent scalability of NEPTUNE_CFD up to 1024 cores, and demonstrates the good agreement between the parallel simulation results and the analytical solutions. Strong scaling and weak scaling benchmarks have been performed. The second test case, a realistic dense fluidized bed shows the code computing performances on an industrial geometry

    Parallel ACO with a Ring Neighborhood for Dynamic TSP

    Full text link
    The current paper introduces a new parallel computing technique based on ant colony optimization for a dynamic routing problem. In the dynamic traveling salesman problem the distances between cities as travel times are no longer fixed. The new technique uses a parallel model for a problem variant that allows a slight movement of nodes within their Neighborhoods. The algorithm is tested with success on several large data sets.Comment: 8 pages, 1 figure; accepted J. Information Technology Researc

    User-defined data types and operators in occam

    Get PDF
    This paper describes the addition of user-defined monadic and dyadic operators to occam* [1], together with some libraries that demonstrate their use. It also discusses some techniques used in their implementation in KRoC [2] for a variety of target machines

    Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory

    Full text link
    The methods of density-functional perturbation theory may be used to calculate various physical response properties of insulating crystals including elastic, dielectric, Born charge, and piezoelectric tensors. These and other important tensors may be defined as second derivatives of the total energy with respect to atomic-displacement, electric-field, or strain perturbations, or as mixed derivatives with respect to two of these perturbations. The resulting tensor quantities tend to be coupled in complex ways in polar crystals, giving rise to a variety of variant definitions. For example, it is generally necessary to distinguish between elastic tensors defined under different electrostatic boundary conditions, and between dielectric tensors defined under different elastic boundary conditions. Here, we describe an approach for computing all of these various response tensors in a unified and systematic fashion. Applications are presented for two materials, wurtzite ZnO and rhombohedral BaTiO3, at zero temperature.Comment: 14 pages. Uses REVTEX macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/xfw_sys/index.htm
    corecore