935,380 research outputs found

    Non-Gaussianity in String Cosmology: A Case Study

    Full text link
    We study non-gaussianity effects, using the δN\delta N formalism, in a multi-field inflationary model consisting of K\"ahler moduli derived from type IIB string compactification in the large volume limit. The analytical work in this paper mostly follows the separable potential method developed by Vernizzi and Wands. The numerical analysis is then used in computing non-gaussianity beyond slow-roll regime. The possibility of the curvaton scenario is also discussed. We give the condition for the existence of the curvaton and calculate the non-guassianity generated by the curvaton decay in the large volume limit.Comment: 25 page

    On the design of a real-time volume rendering engine

    Get PDF
    An architecture for a Real-Time Volume Rendering Engine (RT-VRE) is given, capable of computing 750 × 750 × 512 samples from a 3D dataset at a rate of 25 images per second. The RT-VRE uses for this purpose 64 dedicated rendering chips, cooperating with 16 RISC-processors. A plane interpolator circuit and a composition circuit, both capable to operate at very high speeds, have been designed for a 1.6 micron VLSI process. Both the interpolator and composition circuit are back from production. They have been tested and both complied with our specifications

    On Volumes of Subregions in Holography and Complexity

    Full text link
    The volume of the region inside the bulk Ryu-Takayanagi surface is a codimension-one object, and a natural generalization of holographic complexity to the case of subregions in the boundary QFT. We focus on time-independent geometries, and study the properties of this volume in various circumstances. We derive a formula for computing the volume for a strip entangling surface and a general asymptotically AdS bulk geometry. For an AdS black hole geometry, the volume exhibits non-monotonic behaviour as a function of the size of the entangling region (unlike the behaviour of the entanglement entropy in this setup, which is monotonic). For setups in which the holographic entanglement entropy exhibits transitions in the bulk, such as global AdS black hole, geometries dual to confining theories and disjoint entangling surfaces, the corresponding volume exhibits a discontinuous finite jump at the transition point (and so do the volumes of the corresponding entanglement wedges). We compute this volume discontinuity in several examples. Lastly, we compute the codim-zero volume and the bulk action of the entanglement wedge for the case of a sphere entangling surface and pure AdS geometry.Comment: 25 page

    Introduction to special issue on ‘Recent computing paradigms, network protocols, and applications’

    Get PDF
    This special issue of Innovations in Systems and Software Engineering: A NASA Journal is devoted to selected contributions from the 3rd International Conference on Advanced Computing, Networking and Informatics (ICACNI-2015), organized by School of Computer Engineering, KIIT University, Odisha, India, during 23–25 June, 2015. The conference commenced with a keynote by Prof. Nikhil R. Pal (Fellow IEEE, Vice President for Publications IEEE Computational Intelligence Society (2015–2016), Indian Statistical Institute, Kolkata, India) on ‘A Fuzzy Rule-Based Approach to Single Frame Super Resolution’. Apart from three regular tracks on advanced computing, networking, and informatics, the conference hosted three invited special sessions. While a total of 558 articles across different tracks of the conference were received, 132 articles are finally selected for presentation and publication by Smart Innovation, Systems and Technologies series of Springer as Volume 43 and 44. The conference showcased a technical talk by Prof. Nabendu Chaki (Senior Member IEEE, Calcutta University, India) on ‘Evolution from Web-based Applications to Cloud Services: A Case Study with Remote Healthcare’. The conference identified some wonderful works and has given away eight awards in different categories

    Future glacial lakes in High Mountain Asia: an inventory and assessment of hazard potential from surrounding slopes

    Get PDF
    Bedrock overdeepenings exposed by continued glacial retreat can store precipitation and meltwater, potentially leading to the formation of new proglacial lakes. These lakes may pose threats of glacial lake outburst floods (GLOFs) in high mountain areas, particularly if new lakes form in geomorphological setups prone to triggering events such as landslides or moraine collapses. We present the first complete inventory for future glacial lakes in High Mountain Asia by computing the subglacial bedrock for ~100 000 glaciers and estimating overdeepening area, volume and impact hazard for the larger potential lakes. We detect 25 285 overdeepenings larger than 104 m2 with a volume of 99.1 ± 28.6 km3 covering an area of 2683 ± 773.8 km2. For the 2700 overdeepenings larger than 105 m2, we assess the lake predisposition for mass-movement impacts that could trigger a GLOF by estimating the hazard of material detaching from surrounding slopes. Our findings indicate a shift in lake area, volume and GLOF hazard from the southwestern Himalayan region toward the Karakoram. The results of this study can be used for anticipating emerging threats and potentials connected to glacial lakes and as a basis for further studies at suspected GLOF hazard hotspots.Peer Reviewe

    Consistency tests of AMPCALCULATOR and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial based approach

    Full text link
    Ampcalculator is a Mathematica based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one-loop (upto O(p4)O(p^4)) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G27G_{27}. Another illustrative set of amplitudes at tree level we provide is in the context of τ\tau-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. Kaon-Compton amplitude has been checked and a minor error in published results has been pointed out. This exercise is a tutorial based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and used in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.Comment: 25 pages, plain latex, corresponds to version to appear in EPJA, additional ancillary files adde
    corecore