266 research outputs found

    Automatic Small Bowel Tumor Diagnosis by Using Multi-Scale Wavelet-Based Analysis in Wireless Capsule Endoscopy Images

    Get PDF
    BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice

    An Automatic Gastrointestinal Polyp Detection System in Video Endoscopy Using Fusion of Color Wavelet and Convolutional Neural Network Features

    Get PDF
    Gastrointestinal polyps are considered to be the precursors of cancer development in most of the cases. Therefore, early detection and removal of polyps can reduce the possibility of cancer. Video endoscopy is the most used diagnostic modality for gastrointestinal polyps. But, because it is an operator dependent procedure, several human factors can lead to misdetection of polyps. Computer aided polyp detection can reduce polyp miss detection rate and assists doctors in finding the most important regions to pay attention to. In this paper, an automatic system has been proposed as a support to gastrointestinal polyp detection. This system captures the video streams from endoscopic video and, in the output, it shows the identified polyps. Color wavelet (CW) features and convolutional neural network (CNN) features of video frames are extracted and combined together which are used to train a linear support vector machine (SVM). Evaluations on standard public databases show that the proposed system outperforms the state-of-the-art methods, gaining accuracy of 98.65%, sensitivity of 98.79%, and specificity of 98.52%

    Decomposition of color wavelet with higher order statistical texture and convolutional neural network features set based classification of colorectal polyps from video endoscopy

    Get PDF
    Gastrointestinal cancer is one of the leading causes of death across the world. The gastrointestinal polyps are considered as the precursors of developing this malignant cancer. In order to condense the probability of cancer, early detection and removal of colorectal polyps can be cogitated. The most used diagnostic modality for colorectal polyps is video endoscopy. But the accuracy of diagnosis mostly depends on doctors' experience that is crucial to detect polyps in many cases. Computer-aided polyp detection is promising to reduce the miss detection rate of the polyp and thus improve the accuracy of diagnosis results. The proposed method first detects polyp and non-polyp then illustrates an automatic polyp classification technique from endoscopic video through color wavelet with higher-order statistical texture feature and Convolutional Neural Network (CNN). Gray Level Run Length Matrix (GLRLM) is used for higher-order statistical texture features of different directions (Ɵ = 0o, 45o, 90o, 135o). The features are fed into a linear support vector machine (SVM) to train the classifier. The experimental result demonstrates that the proposed approach is auspicious and operative with residual network architecture, which triumphs the best performance of accuracy, sensitivity, and specificity of 98.83%, 97.87%, and 99.13% respectively for classification of colorectal polyps on standard public endoscopic video databases

    Wireless capsule endoscopic frame classification scheme based on higher order statistics of multi-scale texture descriptors

    Get PDF
    The gastrointestinal (GI) tract is a long tube, prone to all kind of lesions. The traditional endoscopic methods do not reach the entire GI tract. Wireless capsule endoscopy is a diagnostic procedure that allows the visualization of the whole GI tract, acquiring video frames, at a rate of two frames per second, while travels through the GI tract, propelled by peristalsis. These frames possess rich information about the condition of the stomach and intestine mucosa, expressed by color and texture in these images. These vital characteristics of each frame can be extracted by color texture analysis. Since texture information is present as middle and high frequency content in the original image, two new images are synthesized from the discrete wavelet coefficients at the lowest and middle scale of a two level Discrete Wavelet Transform of the original frame. These new synthesized images contain essential texture information, at different scales, which can be extracted from statistical descriptors of the coocurrence matrices, which are second-order representations of the synthesized images that encode color and spatial relationships within the pixels of these new images. Since the human perception of texture is complex, a multi-scale and multicolor process based in the analysis of the spatial color variations relationships, is proposed, as classification features. The multicolor texture information is modeled by the third order moments of the texture descriptors sampled at the different color channels. HSV color space is more related to the perceptive human characteristics, therefore it was used in the ambit of this paper. The multi-scale texture information is modeled by covariance of the texture descriptors within the same color channel of the two synthesized images, which contain texture information at different scales. The features are used in a classification scheme using a multilayer perceptron neural network. The proposed method has been applied in real data taken from several capsule endoscopic exams and reaches 94.6% of sensitivity and 93.7% specificity. These results support the feasibility of the proposed algorithm.Center Algoritm

    Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform

    Get PDF
    Capsule endoscopy is an important tool to diagnosis tumor lesions in the small bowel. The capsule endoscopic images possess vital information expressed by color and texture. This paper presents an approach based in the textural analysis of the different color channels, using the wavelet transform to select the bands with the most significant texture information. A new image is then synthesized from the selected wavelet bands, trough the inverse wavelet transform. The features of each image are based on second-order textural information, and they are used in a classification scheme using a multilayer perceptron neural network. The proposed methodology has been applied in real data taken from capsule endoscopic exams and reached 98.7% sensibility and 96.6% specificity. These results support the feasibility of the proposed algorithm.Centre Algoritm

    Texture classification of images from endoscopic capsule by using MLP and SVM – a comparative approach

    Get PDF
    This article reports a comparative study of Multilayer Perceptrons (MLP) and Support Vector Machines (SVM) in the classification of endoscopic capsule images. Texture information is coded by second order statistics of color image levels extracted from co-occurrence matrices. The co-occurrence matrices are computed from images rich in texture information. These images are obtained by processing the original images in the wavelet domain in order to select the most important information concerning texture description. Texture descriptors calculated from co-occurrence matrices are then modeled by using third and forth order moments in order to cope with non-Gaussianity, which appears especially in some pathological cases. Several color spaces are used, namely the most simple RGB, the most related to the human perception HSV, and the one that best separates light and color information, which uses luminance and color differences, usually known as YCbCr.Centre Algoritm

    Detecting abnormalities in endoscopic capsule images using color wavelet features and feed-forward neural networks

    Get PDF
    This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to encode textural information is named color wavelet covariance (CWC). CWC coefficients are based on the covariances of second order textural measures, an optimum subset of them is proposed. The proposed approach is supported by a classifier based on multilayer perceptron network for the characterization of the image regions along the video frames. The whole methodology has been applied on real data containing 6 full endoscopic exams and reached 87% specificity and 97.4% sensitivity.Center Algoritm

    A Survey On Medical Digital Imaging Of Endoscopic Gastritis.

    Get PDF
    This paper focuses on researches related to medical digital imaging of endoscopic gastritis
    corecore