2,904 research outputs found

    ELECTROCARDIOGRAM GENERATION SOFTWARE FOR TESTING OF PARAMETER EXTRACTION ALGORITHMS

    Get PDF
    Fast and automated ECG diagnosis is of great benefit for treatment of cardiovascular and other conditions. The algorithms used to extract parameters need to be precise, robust and efficient. Appropriate training and testing methods for such algorithms need to be implemented for optimal results. This paper presents a software solution for computer ECG generation and a simplified concept of testing process. All the parameters of the resulting generated signal can be tweaked and set properly. Such software can also be beneficial for training and educational use

    HEART MONITORING VIA WIRELESS ECG

    Get PDF
    The monitoring of heart had been a complex task. Acquiring ECG of the chronic patient spending most of their time outside the hospital had been a trivial task. Recording of ECG of such patients using wireless method is further challenging. This paper presents various methods of wireless ECG acquisition, their limitations and challenges. Cardiomobile, Flexible wireless ECG are the examples of such systems that are available in the medical world for wireless ECG

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 159

    Get PDF
    This bibliography lists 257 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1976

    Quality assessment standards in artificial intelligence diagnostic accuracy systematic reviews: a meta-research study

    Get PDF
    Artificial intelligence (AI) centred diagnostic systems are increasingly recognized as robust solutions in healthcare delivery pathways. In turn, there has been a concurrent rise in secondary research studies regarding these technologies in order to influence key clinical and policymaking decisions. It is therefore essential that these studies accurately appraise methodological quality and risk of bias within shortlisted trials and reports. In order to assess whether this critical step is performed, we undertook a meta-research study evaluating adherence to the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool within AI diagnostic accuracy systematic reviews. A literature search was conducted on all studies published from 2000 to December 2020. Of 50 included reviews, 36 performed quality assessment, of which 27 utilised the QUADAS-2 tool. Bias was reported across all four domains of QUADAS-2. 243 of 423 studies (57.5%) across all systematic reviews utilising QUADAS-2 reported a high or unclear risk of bias in the patient selection domain, 110 (26%) reported a high or unclear risk of bias in the index test domain, 121 (28.6%) in the reference standard domain and 157 (37.1%) in the flow and timing domain. This study demonstrates incomplete uptake of quality assessment tools in reviews of AI-based diagnostic accuracy studies and highlights inconsistent reporting across all domains of quality assessment. Poor standards of reporting act as barriers to clinical implementation. The creation of an AI specific extension for quality assessment tools of diagnostic accuracy AI studies may facilitate the safe translation of AI tools into clinical practice

    Domesticating AI in medical diagnosis

    Get PDF
    We consider the anticipated adoption of Artificial Intelligence (AI) in medical diagnosis. We examine how seemingly compelling claims are tested as AI tools move into real-world settings and discuss how analysts can develop effective understandings in novel and rapidly changing settings.Four case studies highlight the challenges of utilising diagnostic AI tools at differing stages in their innovation journey. Two ‘upstream’ cases seeking to demonstrate the practical applicability of AI and two ‘downstream’ cases focusing on the roll out and scaling of more established applications.We observed an unfolding uncoordinated process of social learning capturing two key moments: i) experiments to create and establish the clinical potential of AI tools; and, ii) attempts to verify their dependability in clinical settings while extending their scale and scope. Health professionals critically appraise tool performance, relying on them selectively where their results can be demonstrably trusted, in a de facto model of responsible use. We note a shift from procuring stand-alone solutions to deploying suites of AI tools through platforms to facilitate adoption and reduce the costs of procurement, implementation and evaluation which impede the viability of stand-alone solutions.New conceptual frameworks and methodological strategies are needed to address the rapid evolution of AI tools as they move from research settings and are deployed in real-world care across multiple settings. We observe how, in this process of deployment, AI tools become ‘domesticated’. We propose longitudinal and multisite `biographical’ investigations of medical AI rather than snapshot studies of emerging technologies that fail to capture change and variation in performance across contexts

    Performance Evaluation of Wavelet De-Noising Schemes for Suppression of Power Line Noise in Electrocardiogram Signals

    Get PDF
    Power line noise introduces distortions to recorded electrocardiogram (ECG) signals. These distortions compromise the integrity and negatively affect the interpretation of the ECG signals. Despite the fact that the amplifiers used in biomedical signal processing have high common mode rejection ratio (CMRR), ECG recordings are still often corrupted with residual Power Line Interference (PLI) noise. Further improvement in the hardware solutions do not have significant achievements in PLI noise suppression but rather introduce other adverse effects. Software approach is necessary to refine ECG data. Evaluation of PLI noise suppression in ECG signal in the wavelet domain is presented. The performance of the Hard Threshold Shrinkage Function (HTSF), the Soft Threshold Shrinkage Function (STSF), the Hyperbola Threshold Shrinkage Function (HYTSF), the Garrote Threshold Shrinkage Function (GTSF), and the Modified Garrote Threshold Shrinkage Function (MGTSF) for the suppression of PLI noise are evaluated and compared with the aid of an algorithm. The optimum tuning constant for the Modified Garrote Threshold Shrinkage Function (MGTSF) is found to be 1.18 for PLI noise. GTSF is found to have best performance closely followed by MGTSF in term of filtering Gain. HTSF recorded the lowest Gain. Filtering against PLI noise in the wavelet domain preserves the key features of the signal such as the QRS complex

    Clinical applications of artificial intelligence in cardiology on the verge of the decade

    Get PDF
    Artificial intelligence (AI) has been hailed as the fourth industrial revolution and its influence on people’s lives is increasing. The research on AI applications in medicine is progressing rapidly. This revolution shows promise for more precise diagnoses, streamlined workflows, increased accessibility to healthcare services and new insights into ever-growing population-wide datasets. While some applications have already found their way into contemporary patient care, we are still in the early days of the AI-era in medicine. Despite the popularity of these new technologies, many practitioners lack an understanding of AI methods, their benefits, and pitfalls. This review aims to provide information about the general concepts of machine learning (ML) with special focus on the applications of such techniques in cardiovascular medicine. It also sets out the current trends in research related to medical applications of AI. Along with new possibilities, new threats arise — acknowledging and understanding them is as important as understanding the ML methodology itself. Therefore, attention is also paid to the current opinions and guidelines regarding the validation and safety of AI-powered tools

    A novel LabVIEW-based multi-channel non-invasive abdominal maternal-fetal electrocardiogram signal generator

    Get PDF
    PubMed ID: 26799770Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Web of Science37225623
    • …
    corecore