1,308,295 research outputs found
Computer vision
The field of computer vision is surveyed and assessed, key research issues are identified, and possibilities for a future vision system are discussed. The problems of descriptions of two and three dimensional worlds are discussed. The representation of such features as texture, edges, curves, and corners are detailed. Recognition methods are described in which cross correlation coefficients are maximized or numerical values for a set of features are measured. Object tracking is discussed in terms of the robust matching algorithms that must be devised. Stereo vision, camera control and calibration, and the hardware and systems architecture are discussed
Are object detection assessment criteria ready for maritime computer vision?
Maritime vessels equipped with visible and infrared cameras can complement
other conventional sensors for object detection. However, application of
computer vision techniques in maritime domain received attention only recently.
The maritime environment offers its own unique requirements and challenges.
Assessment of the quality of detections is a fundamental need in computer
vision. However, the conventional assessment metrics suitable for usual object
detection are deficient in the maritime setting. Thus, a large body of related
work in computer vision appears inapplicable to the maritime setting at the
first sight. We discuss the problem of defining assessment metrics suitable for
maritime computer vision. We consider new bottom edge proximity metrics as
assessment metrics for maritime computer vision. These metrics indicate that
existing computer vision approaches are indeed promising for maritime computer
vision and can play a foundational role in the emerging field of maritime
computer vision
Crowdsourcing in Computer Vision
Computer vision systems require large amounts of manually annotated data to
properly learn challenging visual concepts. Crowdsourcing platforms offer an
inexpensive method to capture human knowledge and understanding, for a vast
number of visual perception tasks. In this survey, we describe the types of
annotations computer vision researchers have collected using crowdsourcing, and
how they have ensured that this data is of high quality while annotation effort
is minimized. We begin by discussing data collection on both classic (e.g.,
object recognition) and recent (e.g., visual story-telling) vision tasks. We
then summarize key design decisions for creating effective data collection
interfaces and workflows, and present strategies for intelligently selecting
the most important data instances to annotate. Finally, we conclude with some
thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in
Computer Graphics and Vision, 201
Negative Results in Computer Vision: A Perspective
A negative result is when the outcome of an experiment or a model is not what
is expected or when a hypothesis does not hold. Despite being often overlooked
in the scientific community, negative results are results and they carry value.
While this topic has been extensively discussed in other fields such as social
sciences and biosciences, less attention has been paid to it in the computer
vision community. The unique characteristics of computer vision, particularly
its experimental aspect, call for a special treatment of this matter. In this
paper, I will address what makes negative results important, how they should be
disseminated and incentivized, and what lessons can be learned from cognitive
vision research in this regard. Further, I will discuss issues such as computer
vision and human vision interaction, experimental design and statistical
hypothesis testing, explanatory versus predictive modeling, performance
evaluation, model comparison, as well as computer vision research culture
A Taxonomy of Deep Convolutional Neural Nets for Computer Vision
Traditional architectures for solving computer vision problems and the degree
of success they enjoyed have been heavily reliant on hand-crafted features.
However, of late, deep learning techniques have offered a compelling
alternative -- that of automatically learning problem-specific features. With
this new paradigm, every problem in computer vision is now being re-examined
from a deep learning perspective. Therefore, it has become important to
understand what kind of deep networks are suitable for a given problem.
Although general surveys of this fast-moving paradigm (i.e. deep-networks)
exist, a survey specific to computer vision is missing. We specifically
consider one form of deep networks widely used in computer vision -
convolutional neural networks (CNNs). We start with "AlexNet" as our base CNN
and then examine the broad variations proposed over time to suit different
applications. We hope that our recipe-style survey will serve as a guide,
particularly for novice practitioners intending to use deep-learning techniques
for computer vision.Comment: Published in Frontiers in Robotics and AI (http://goo.gl/6691Bm
Deep learning architectures for Computer Vision
Deep learning has become part of many state-of-the-art systems in multiple disciplines (specially in computer vision and speech processing). In this thesis Convolutional Neural Networks are used to solve the problem of recognizing people in images, both for verification and identification. Two different architectures, AlexNet and VGG19, both winners of the ILSVRC, have been fine-tuned and tested with four datasets: Labeled Faces in the Wild, FaceScrub, YouTubeFaces and Google UPC, a dataset generated at the UPC. Finally, with the features extracted from these fine-tuned networks, some verifications algorithms have been tested including Support Vector Machines, Joint Bayesian and Advanced Joint Bayesian formulation. The results of this work show that an Area Under the Receiver Operating Characteristic curve of 99.6% can be obtained, close to the state-of-the-art performance.El aprendizaje profundo se ha convertido en parte de muchos sistemas en el estado del arte de múltiples ámbitos (especialmente en visión por computador y procesamiento de voz). En esta tesis se utilizan las Redes Neuronales Convolucionales para resolver el problema de reconocer a personas en imágenes, tanto para verificación como para identificación. Dos arquitecturas diferentes, AlexNet y VGG19, ambas ganadores del ILSVRC, han sido afinadas y probadas con cuatro conjuntos de datos: Labeled Faces in the Wild, FaceScrub, YouTubeFaces y Google UPC, un conjunto generado en la UPC. Finalmente con las características extraídas de las redes afinadas, se han probado diferentes algoritmos de verificación, incluyendo Maquinas de Soporte Vectorial, Joint Bayesian y Advanced Joint Bayesian. Los resultados de este trabajo muestran que el Área Bajo la Curva de la Característica Operativa del Receptor puede llegar a ser del 99.6%, cercana al valor del estado del arte.L’aprenentatge profund s’ha convertit en una part importat de molts sistemes a l’estat de
l’art de múltiples àmbits (especialment de la visió per computador i el processament de
veu). A aquesta tesi s’utilitzen les Xarxes Neuronals Convolucionals per a resoldre el
problema de reconèixer persones a imatges, tant per verificació com per identificatió.
Dos arquitectures diferents, AlexNet i VGG19, les dues guanyadores del ILSVRC, han
sigut afinades i provades amb quatre bases de dades: Labeled Faces in the Wild,
FaceScrub, YouTubeFaces i Google UPC, un conjunt generat a la UPC.
Finalment, amb les característiques extretes de les xarxes afinades, s’han provat diferents
algoritmes de verificació, incloent Màquines de Suport Vectorial, Joint Bayesian i Advanced
Joint Bayesian. Els resultats d’aquest treball mostres que un Àrea Baix la Curva de la
Característica Operativa del Receptor por arribar a ser del 99.6%, propera al valor de l’estat
de l’art
When Computer Vision Gazes at Cognition
Joint attention is a core, early-developing form of social interaction. It is
based on our ability to discriminate the third party objects that other people
are looking at. While it has been shown that people can accurately determine
whether another person is looking directly at them versus away, little is known
about human ability to discriminate a third person gaze directed towards
objects that are further away, especially in unconstraint cases where the
looker can move her head and eyes freely. In this paper we address this
question by jointly exploring human psychophysics and a cognitively motivated
computer vision model, which can detect the 3D direction of gaze from 2D face
images. The synthesis of behavioral study and computer vision yields several
interesting discoveries. (1) Human accuracy of discriminating targets
8{\deg}-10{\deg} of visual angle apart is around 40% in a free looking gaze
task; (2) The ability to interpret gaze of different lookers vary dramatically;
(3) This variance can be captured by the computational model; (4) Human
outperforms the current model significantly. These results collectively show
that the acuity of human joint attention is indeed highly impressive, given the
computational challenge of the natural looking task. Moreover, the gap between
human and model performance, as well as the variability of gaze interpretation
across different lookers, require further understanding of the underlying
mechanisms utilized by humans for this challenging task.Comment: Tao Gao and Daniel Harari contributed equally to this wor
Speech Processing in Computer Vision Applications
Deep learning has been recently proven to be a viable asset in determining features in the field of Speech Analysis. Deep learning methods like Convolutional Neural Networks facilitate the expansion of specific feature information in waveforms, allowing networks to create more feature dense representations of data. Our work attempts to address the problem of re-creating a face given a speaker\u27s voice and speaker identification using deep learning methods. In this work, we first review the fundamental background in speech processing and its related applications. Then we introduce novel deep learning-based methods to speech feature analysis. Finally, we will present our deep learning approaches to speaker identification and speech to face synthesis. The presented method can convert a speaker audio sample to an image of their predicted face. This framework is composed of several chained together networks, each with an essential step in the conversion process. These include Audio embedding, encoding, and face generation networks, respectively. Our experiments show that certain features can map to the face and that with a speaker\u27s voice, DNNs can create their face and that a GUI could be used in conjunction to display a speaker recognition network\u27s data
- …
