1,960,320 research outputs found
A Survey of Digital Systems Curriculum and Pedagogy in Electrical and Computer Engineering Programs
Digital Systems is one of the basic foundational courses in Electrical and Computer Engineering. One of the challenges in designing and modifying the curriculum for the course is the fast pace of technology change in the area. TTL chips that were in vogue with students building physical circuits, have given way to new paradigms like FPGA based synthesis with hardware description languages such as VHDL. However, updating a course is not as simple as just changing the book, and changing the syllabus. A large amount of work needs to be done in terms of selecting the book that will accommodate the course, the device that should be used, the laboratory content, and even how much time needs to be dedicated for every topic. All these issues, and many more makes it hard to take the decision of updating the course. For that reason, this paper surveys the pedagogy and methodology that is used to teach the digital systems curriculum at different universities. The goal is that it will serve as a resource for faculty looking to update or revamp their digital systems curricula. Within the document they will find a comparative study by electrical and computer engineering program, a list of textbooks, and the devices most commonly used.Cockrell School of Engineerin
A double-edged sword: Use of computer algebra systems in first-year Engineering Mathematics and Mechanics courses
Many secondary-level mathematics students have experience with graphical calculators from high school. For the purposes of this paper we define graphical calculators as those able to perform rudimentary symbolic manipulation and solve complicated equations requiring very modest user knowledge. The use of more advanced computer algebra systems e.g. Maple, Mathematica, Mathcad, Matlab/MuPad is becoming more prevalent in tertiary-level courses.
This paper explores our students’ experience using one such system (MuPad) in first-year tertiary Engineering Mathematics and Mechanics courses.
The effectiveness of graphical calculators and computer algebra systems in mathematical pedagogy has been investigated by a multitude of educational researchers (e.g. Ravaglia et al. 1998). Most of these studies found very small or no correlation between student use of
graphical calculators or exposure to computer algebra systems with future achievement in mathematics courses (Buteau et al. 2010).
In this paper we focus instead on students’ attitude towards a more advanced standalone computer algebra system (MuPad), and whether students’ inclination to use the system is indicative of their mathematical understanding.
Paper describing some preliminary research into use of computer algebra systems for teaching engineering mathematics
The importance of understanding computer analyses in civil engineering
Sophisticated computer modelling systems are widely used in civil engineering analysis. This paper takes examples from structural engineering, environmental engineering, flood management and geotechnical engineering to illustrate the need for civil engineers to be competent in the use of computer tools. An understanding of a model's scientific basis, appropriateness, numerical limitations, validation, verification and propagation of uncertainty is required before applying its results. A review of education and training is also suggested to ensure engineers are competent at using computer modelling systems, particularly in the context of risk management. 1. Introductio
Microservices and Machine Learning Algorithms for Adaptive Green Buildings
In recent years, the use of services for Open Systems development has consolidated and strengthened. Advances in the Service Science and Engineering (SSE) community, promoted by the reinforcement of Web Services and Semantic Web technologies and the presence of new Cloud computing techniques, such as the proliferation of microservices solutions, have allowed software architects to experiment and develop new ways of building open and adaptable computer systems at runtime. Home automation, intelligent buildings, robotics, graphical user interfaces are some of the social atmosphere environments suitable in which to apply certain innovative trends. This paper presents a schema for the adaptation of Dynamic Computer Systems (DCS) using interdisciplinary techniques on model-driven engineering, service engineering and soft computing. The proposal manages an orchestrated microservices schema for adapting component-based software architectural systems at runtime. This schema has been developed as a three-layer adaptive transformation process that is supported on a rule-based decision-making service implemented by means of Machine Learning (ML) algorithms. The experimental development was implemented in the Solar Energy Research Center (CIESOL) applying the proposed microservices schema for adapting home architectural atmosphere systems on Green Buildings
Collaborative Verification-Driven Engineering of Hybrid Systems
Hybrid systems with both discrete and continuous dynamics are an important
model for real-world cyber-physical systems. The key challenge is to ensure
their correct functioning w.r.t. safety requirements. Promising techniques to
ensure safety seem to be model-driven engineering to develop hybrid systems in
a well-defined and traceable manner, and formal verification to prove their
correctness. Their combination forms the vision of verification-driven
engineering. Often, hybrid systems are rather complex in that they require
expertise from many domains (e.g., robotics, control systems, computer science,
software engineering, and mechanical engineering). Moreover, despite the
remarkable progress in automating formal verification of hybrid systems, the
construction of proofs of complex systems often requires nontrivial human
guidance, since hybrid systems verification tools solve undecidable problems.
It is, thus, not uncommon for development and verification teams to consist of
many players with diverse expertise. This paper introduces a
verification-driven engineering toolset that extends our previous work on
hybrid and arithmetic verification with tools for (i) graphical (UML) and
textual modeling of hybrid systems, (ii) exchanging and comparing models and
proofs, and (iii) managing verification tasks. This toolset makes it easier to
tackle large-scale verification tasks
Software for Wearable Devices: Challenges and Opportunities
Wearable devices are a new form of mobile computer system that provides
exclusive and user-personalized services. Wearable devices bring new issues and
challenges to computer science and technology. This paper summarizes the
development process and the categories of wearable devices. In addition, we
present new key issues arising in aspects of wearable devices, including
operating systems, database management system, network communication protocol,
application development platform, privacy and security, energy consumption,
human-computer interaction, software engineering, and big data.Comment: 6 pages, 1 figure, for Compsac 201
History of visual systems in the Systems Engineering Simulator
The Systems Engineering Simulator (SES) houses a variety of real-time computer generated visual systems. The earliest machine dates from the mid-1960's and is one of the first real-time graphics systems in the world. The latest acquisition is the state-of-the-art Evans and Sutherland CT6. Between the span of time from the mid-1960's to the late 1980's, tremendous strides have been made in the real-time graphics world. These strides include advances in both software and hardware engineering. The purpose is to explore the history of the development of these real-time computer generated image systems from the first machine to the present. Hardware advances as well as software algorithm changes are presented. This history is not only quite interesting but also provides us with a perspective with which we can look backward and forward
Evaluating groupware support for software engineering students
Software engineering tasks, during both development and maintenance, typically involve teamwork using computers. Team members rarely work on isolated computers. An underlying assumption of our research is that software engineering teams will work more effectively if adequately supported by network-based groupware technology. Experience of working with groupware and evaluating groupware systems will also give software engineering students a direct appreciation of the requirements of engineering such systems.
This research is investigating the provision of such network-based support for software engineering students and the impact these tools have on their groupwork. We will first describe our experiences gained through the introduction of an asynchronous virtual environment SEGWorld to support groupwork during the Software Engineering Group (SEG) project undertaken by all second year undergraduates within the Department of Computer Science. Secondly we will describe our Computer Supported Cooperative Work (CSCW) module which has been introduced into the students' final year of study as a direct
result of our experience with SEG, and in particular its role within Software Engineering. Within this CSCW module the students have had the opportunity to evaluate various
groupware tools. This has enabled them to take a retrospective view of their experience of SEGWorld and its underlying system, BSCW, one year on. We report our findings for SEG in the form of a discussion of the hypotheses we formulated on how the SEGs would use SEGWorld, and present an initial qualitative assessment of student feedback from the CSCW module
- …
