1,153 research outputs found

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Praat Tutorial_2: van Lieshout

    Get PDF

    Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection

    Get PDF
    Background: Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased "breathiness". Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.

Methods: This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a "hoarseness" diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices.

Results: On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8% plus or minus 2.0%. The true positive classification performance is 95.4% plus or minus 3.2%, and the true negative performance is 91.5% plus or minus 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools.

Conclusions: Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification technique. They do so by exploiting the inherent nonlinearity and turbulent randomness in disordered voice signals. They are widely applicable to the whole range of disordered voice phenomena by design. These new measures could therefore be used for a variety of practical clinical purposes.
&#xa

    Objective dysphonia quantification in vocal fold paralysis: comparing nonlinear with classical measures

    Get PDF
    Clinical acoustic voice recording analysis is usually performed using classical perturbation measures including jitter, shimmer and noise-to-harmonic ratios. However, restrictive mathematical limitations of these measures prevent analysis for severely dysphonic voices. Previous studies of alternative nonlinear random measures addressed wide varieties of vocal pathologies. Here, we analyze a single vocal pathology cohort, testing the performance of these alternative measures alongside classical measures.

We present voice analysis pre- and post-operatively in unilateral vocal fold paralysis (UVFP) patients and healthy controls, patients undergoing standard medialisation thyroplasty surgery, using jitter, shimmer and noise-to-harmonic ratio (NHR), and nonlinear recurrence period density entropy (RPDE), detrended fluctuation analysis (DFA) and correlation dimension. Systematizing the preparative editing of the recordings, we found that the novel measures were more stable and hence reliable, than the classical measures, on healthy controls.

RPDE and jitter are sensitive to improvements pre- to post-operation. Shimmer, NHR and DFA showed no significant change (p > 0.05). All measures detect statistically significant and clinically important differences between controls and patients, both treated and untreated (p < 0.001, AUC > 0.7). Pre- to post-operation, GRBAS ratings show statistically significant and clinically important improvement in overall dysphonia grade (G) (AUC = 0.946, p < 0.001).

Re-calculating AUCs from other study data, we compare these results in terms of clinical importance. We conclude that, when preparative editing is systematized, nonlinear random measures may be useful UVFP treatment effectiveness monitoring tools, and there may be applications for other forms of dysphonia.
&#xa

    Parameters for vocal acoustic analysis - cured database

    Get PDF
    This paper describes the construction and organization of a database of speech parameters extracted from a speech database. This article intends to inform the community about the existence of this database for future research. The database includes parameters extracted from sounds produced by patients distributed among 19 diseases and control subjects. The set of parameters of this database consists of the jitter, shimmer, Harmonic to Noise Ratio (HNR), Noise to Harmonic Ratio (NHR), autocorrelation and Mel Frequency Cepstral Coefficients (MFCC) extracted from the sound of sustained vowels /a/, /i/ and /u/ at the high, low and normal tones, and a short German sentence. The cured database has a total number of 707 pathological subjects (distributed by the various diseases) and 194 control subjects, in a total of 901 subjects.info:eu-repo/semantics/publishedVersio

    Spectral analysis of pathological acoustic speech waveforms

    Full text link
    Biomedical engineering is the application of engineering principles and techniques to the medical field. The design and problem solving skills of engineering are combined with medical and biological science, which improves medical disorder diagnosis and treatment. The purpose of this study is to develop an automated procedure for detecting excessive jitter in speech signals, which is useful for differentiating normal from pathologic speech. The fundamental motivation for this research is that tools are needed by speech pathologists and laryngologists for use in the early detection and treatment of laryngeal disorders. Acoustical analysis of speech was performed to analyze various features of a speech signal. Earlier research established a relation between pitch period jitter and harmonic bandwidth. This concept was used for detecting laryngeal disorders in speech since pathologic speech has been found to have larger amounts of jitter than normal speech. Our study was performed using vowel samples from the voice disorder database recorded at the Massachusetts Eye and Ear Infirmary (MEEI) in1994. The KAYPENTAX company markets this database. Software development was conducted using MATLAB, a user-friendly programming language which has been applied widely for signal processing. An algorithm was developed to compute harmonic bandwidths for various speech samples of sustained vowel sounds. Open and closed tests were conducted on 23 samples of pathologic and normal speech samples each. Classification results showed 69.56% probability of correct detection of pathologic speech samples during an open test

    Cured database of sustained speech parameters for chronic laryngitis pathology

    Get PDF
    This paper reports the construction and organization of a database of speech parameters extracted from a speech sound database. The database is freely available on internet and the paper intends also theirs advertise for the research community. The database includes the parameters extracted from the sound of sustained vowels produced by a group of Chronic Laryngitis patients and a group of control subjects with similar characteristics concerning gender and age. The set of parameters of this database consists in the Jitter, Shimmer, Harmonic to Noise Ratio (HNR), Noise to Harmonic Ratio (NHR) and Autocorrelation extracted from the sound of sustained vowels /a/, /i/ and /u/ at low, neutral and high tones.info:eu-repo/semantics/publishedVersio

    Study of the characteristic parameters of the normal voices of Argentinian speakers

    Get PDF
    The voice laboratory permits to study the human voices using a method that is objective and noninvasive. In this work, we have studied the parameters of the human voice such as pitch, formant, jitter, shimmer and harmonic-noise ratio of a group of young people. This statistical information of parameters is obtained from Argentinian speakers.publishedVersionFil: Bonzi, Edgardo Venusto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Bonzi, Edgardo Venusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina.Fil: Grad, G. B. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Maggi, A. M. Universidad Nacional de Córdoba. Facultad de Ciencias Médicas. Escuela de Fonoaudiología; Argentina.Fil: Muñóz, M. R. Universidad Nacional de Córdoba. Facultad de Ciencias Médicas. Escuela de Fonoaudiología; Argentina.Otras Ciencias Física
    corecore