6 research outputs found

    Cross-View Image Synthesis using Conditional GANs

    Full text link
    Learning to generate natural scenes has always been a challenging task in computer vision. It is even more painstaking when the generation is conditioned on images with drastically different views. This is mainly because understanding, corresponding, and transforming appearance and semantic information across the views is not trivial. In this paper, we attempt to solve the novel problem of cross-view image synthesis, aerial to street-view and vice versa, using conditional generative adversarial networks (cGAN). Two new architectures called Crossview Fork (X-Fork) and Crossview Sequential (X-Seq) are proposed to generate scenes with resolutions of 64x64 and 256x256 pixels. X-Fork architecture has a single discriminator and a single generator. The generator hallucinates both the image and its semantic segmentation in the target view. X-Seq architecture utilizes two cGANs. The first one generates the target image which is subsequently fed to the second cGAN for generating its corresponding semantic segmentation map. The feedback from the second cGAN helps the first cGAN generate sharper images. Both of our proposed architectures learn to generate natural images as well as their semantic segmentation maps. The proposed methods show that they are able to capture and maintain the true semantics of objects in source and target views better than the traditional image-to-image translation method which considers only the visual appearance of the scene. Extensive qualitative and quantitative evaluations support the effectiveness of our frameworks, compared to two state of the art methods, for natural scene generation across drastically different views.Comment: Accepted at CVPR 201

    Human Action Recognition with RGB-D Sensors

    Get PDF
    none3noHuman action recognition, also known as HAR, is at the foundation of many different applications related to behavioral analysis, surveillance, and safety, thus it has been a very active research area in the last years. The release of inexpensive RGB-D sensors fostered researchers working in this field because depth data simplify the processing of visual data that could be otherwise difficult using classic RGB devices. Furthermore, the availability of depth data allows to implement solutions that are unobtrusive and privacy preserving with respect to classic video-based analysis. In this scenario, the aim of this chapter is to review the most salient techniques for HAR based on depth signal processing, providing some details on a specific method based on temporal pyramid of key poses, evaluated on the well-known MSR Action3D dataset.Cippitelli, Enea; Gambi, Ennio; Spinsante, SusannaCippitelli, Enea; Gambi, Ennio; Spinsante, Susann

    Human Action Recognition with RGB-D Sensors

    Get PDF
    Human action recognition, also known as HAR, is at the foundation of many different applications related to behavioral analysis, surveillance, and safety, thus it has been a very active research area in the last years. The release of inexpensive RGB-D sensors fostered researchers working in this field because depth data simplify the processing of visual data that could be otherwise difficult using classic RGB devices. Furthermore, the availability of depth data allows to implement solutions that are unobtrusive and privacy preserving with respect to classic video-based analysis. In this scenario, the aim of this chapter is to review the most salient techniques for HAR based on depth signal processing, providing some details on a specific method based on temporal pyramid of key poses, evaluated on the well-known MSR Action3D dataset

    Learning Fine-grained View-Invariant Representations from Unpaired Ego-Exo Videos via Temporal Alignment

    Full text link
    The egocentric and exocentric viewpoints of a human activity look dramatically different, yet invariant representations to link them are essential for many potential applications in robotics and augmented reality. Prior work is limited to learning view-invariant features from paired synchronized viewpoints. We relax that strong data assumption and propose to learn fine-grained action features that are invariant to the viewpoints by aligning egocentric and exocentric videos in time, even when not captured simultaneously or in the same environment. To this end, we propose AE2, a self-supervised embedding approach with two key designs: (1) an object-centric encoder that explicitly focuses on regions corresponding to hands and active objects; (2) a contrastive-based alignment objective that leverages temporally reversed frames as negative samples. For evaluation, we establish a benchmark for fine-grained video understanding in the ego-exo context, comprising four datasets -- including an ego tennis forehand dataset we collected, along with dense per-frame labels we annotated for each dataset. On the four datasets, our AE2 method strongly outperforms prior work in a variety of fine-grained downstream tasks, both in regular and cross-view settings.Comment: Project website: https://vision.cs.utexas.edu/projects/AlignEgoExo
    corecore