34,333 research outputs found

    Does self-replication imply evolvability?

    Full text link
    The most prominent property of life on Earth is its ability to evolve. It is often taken for granted that self-replication--the characteristic that makes life possible--implies evolvability, but many examples such as the lack of evolvability in computer viruses seem to challenge this view. Is evolvability itself a property that needs to evolve, or is it automatically present within any chemistry that supports sequences that can evolve in principle? Here, we study evolvability in the digital life system Avida, where self-replicating sequences written by hand are used to seed evolutionary experiments. We use 170 self-replicators that we found in a search through 3 billion randomly generated sequences (at three different sequence lengths) to study the evolvability of generic rather than hand-designed self-replicators. We find that most can evolve but some are evolutionarily sterile. From this limited data set we are led to conclude that evolvability is a likely--but not a guaranteed-- property of random replicators in a digital chemistry.Comment: 8 pages, 5 figures. To appear in "Advances in Artificial Life": Proceedings of the 13th European Conference on Artificial Life (ECAL 2015

    Ab Initio Modeling of Ecosystems with Artificial Life

    Get PDF
    Artificial Life provides the opportunity to study the emergence and evolution of simple ecosystems in real time. We give an overview of the advantages and limitations of such an approach, as well as its relation to individual-based modeling techniques. The Digital Life system Avida is introduced and prospects for experiments with ab initio evolution (evolution "from scratch"), maintenance, as well as stability of ecosystems are discussed.Comment: 13 pages, 2 figure

    Causality, Information and Biological Computation: An algorithmic software approach to life, disease and the immune system

    Full text link
    Biology has taken strong steps towards becoming a computer science aiming at reprogramming nature after the realisation that nature herself has reprogrammed organisms by harnessing the power of natural selection and the digital prescriptive nature of replicating DNA. Here we further unpack ideas related to computability, algorithmic information theory and software engineering, in the context of the extent to which biology can be (re)programmed, and with how we may go about doing so in a more systematic way with all the tools and concepts offered by theoretical computer science in a translation exercise from computing to molecular biology and back. These concepts provide a means to a hierarchical organization thereby blurring previously clear-cut lines between concepts like matter and life, or between tumour types that are otherwise taken as different and may not have however a different cause. This does not diminish the properties of life or make its components and functions less interesting. On the contrary, this approach makes for a more encompassing and integrated view of nature, one that subsumes observer and observed within the same system, and can generate new perspectives and tools with which to view complex diseases like cancer, approaching them afresh from a software-engineering viewpoint that casts evolution in the role of programmer, cells as computing machines, DNA and genes as instructions and computer programs, viruses as hacking devices, the immune system as a software debugging tool, and diseases as an information-theoretic battlefield where all these forces deploy. We show how information theory and algorithmic programming may explain fundamental mechanisms of life and death.Comment: 30 pages, 8 figures. Invited chapter contribution to Information and Causality: From Matter to Life. Sara I. Walker, Paul C.W. Davies and George Ellis (eds.), Cambridge University Pres

    Malware "Ecology" Viewed as Ecological Succession: Historical Trends and Future Prospects

    Full text link
    The development and evolution of malware including computer viruses, worms, and trojan horses, is shown to be closely analogous to the process of community succession long recognized in ecology. In particular, both changes in the overall environment by external disturbances, as well as, feedback effects from malware competition and antivirus coevolution have driven community succession and the development of different types of malware with varying modes of transmission and adaptability.Comment: 13 pages, 3 figure

    Does the Red Queen reign in the kingdom of digital organisms?

    Get PDF
    In competition experiments between two RNA viruses of equal or almost equal fitness, often both strains gain in fitness before one eventually excludes the other. This observation has been linked to the Red Queen effect, which describes a situation in which organisms have to constantly adapt just to keep their status quo. I carried out experiments with digital organisms (self-replicating computer programs) in order to clarify how the competing strains' location in fitness space influences the Red-Queen effect. I found that gains in fitness during competition were prevalent for organisms that were taken from the base of a fitness peak, but absent or rare for organisms that were taken from the top of a peak or from a considerable distance away from the nearest peak. In the latter two cases, either neutral drift and loss of the fittest mutants or the waiting time to the first beneficial mutation were more important factors. Moreover, I found that the Red-Queen dynamic in general led to faster exclusion than the other two mechanisms.Comment: 10 pages, 5 eps figure
    corecore