2 research outputs found

    Machine Learning enabled models for YouTube Ranking Mechanism and Views Prediction

    Full text link
    With the continuous increase of internet usage in todays time, everyone is influenced by this source of the power of technology. Due to this, the rise of applications and games Is unstoppable. A major percentage of our population uses these applications for multiple purposes. These range from education, communication, news, entertainment, and many more. Out of this, the application that is making sure that the world stays in touch with each other and with current affairs is social media. Social media applications have seen a boom in the last 10 years with the introduction of smartphones and the internet being available at affordable prices. Applications like Twitch and Youtube are some of the best platforms for producing content and expressing their talent as well. It is the goal of every content creator to post the best and most reliable content so that they can gain recognition. It is important to know the methods of achieving popularity easily, which is what this paper proposes to bring to the spotlight. There should be certain parameters based on which the reach of content could be multiplied by a good factor. The proposed research work aims to identify and estimate the reach, popularity, and views of a YouTube video by using certain features using machine learning and AI techniques. A ranking system would also be used keeping the trending videos in consideration. This would eventually help the content creator know how authentic their content is and healthy competition to make better content before uploading the video on the platform will be ensured.Comment: The Paper has been ACCEPTED at the "2nd International Conference on Computing and Communication Networks(ICCCN-2022)". This paper will be published by AIP publishing and DOI will be issued later o

    Robust Planning and Operation of Multi-Cell Homogeneous and Heterogeneous Networks

    Get PDF
    International audienceIn this work, we propose a robust planning tool that allocates power statically in homogeneous and heterogeneous cellular networks with non-regular base station (BTS) placement, to mitigate interference and improve overall performance. Each BTS will use the total available spectrum, but it will divide it into multiple sub-bands, and each BTS will transmit with a specific pre-computed power on each sub-band. We refer to such a power allocation as a power map. Our offline planning tool computes a robust power map for a given topology, by solving a non-convex, non-linear optimization problem, through simple transformations, based on geometric programming. The power map is computed based solely on the network topology, and it is made available to all BTSs that use it throughout the network operation to perform scheduling using a fast quasi-optimal online algorithm that we propose. We evaluate our planning tool for different homogeneous and heterogeneous networks (HetNets), first in a static setting where scheduling is performed optimally and then in a dynamic setting when scheduling is performed with our online scheduler. Results show that our solution significantly outperforms a classical equal power/fixed frequency reuse scheme in terms of sum-rate, by up to 30% in homogeneous networks and by up to 70% in HetNets
    corecore