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Abstract—In this work, we propose a robust planning tool
that allocates power statically in homogeneous and heterogeneous
cellular networks with non-regular base station (BTS) placement,
to mitigate interference and improve overall performance. Each
BTS will use the total available spectrum, but it will divide
it into multiple sub-bands, and each BTS will transmit with a
specific pre-computed power on each sub-band. We refer to such
a power allocation as a power map. Our offline planning tool
computes a robust power map for a given topology, by solving
a non-convex, non-linear optimization problem, through simple
transformations, based on geometric programming. The power
map is computed based solely on the network topology, and it is
made available to all BTSs that use it throughout the network
operation to perform scheduling using a fast quasi-optimal online
algorithm that we propose. We evaluate our planning tool for
different homogeneous and heterogeneous networks (HetNets),
first in a static setting where scheduling is performed optimally
and then in a dynamic setting when scheduling is performed with
our online scheduler. Results show that our solution significantly
outperforms a classical equal power/fixed frequency reuse scheme
in terms of sum-rate, by up to 30% in homogeneous networks
and by up to 70% in HetNets.

Index Terms—Power Map, Geometric Programming, Cellular
Networks, Heterogeneous Networks, Scheduling

I. INTRODUCTION

One of the main objectives of 5G is to alleviate the spectrum
scarcity problem suffered by cellular networks. However, we
believe that spectrum will always remain a scarce resource that
needs to be managed well. Hence, there is a need to develop
a complete and efficient suite of radio resource management
(RRM) processes that are easy to implement. This suite
includes channel allocation, power allocation, scheduling, user
allocation, and interference mitigation techniques.

In this work, we focus on power and channel allocation
on the downlink of a multi-cell orthogonal frequency division
multiple access (OFDMA) wireless network. These processes
are usually performed in a planning or upgrade phase offline,
although power can be also allocated in a more dynamic
way (e.g., through scheduling), but at a very high complexity
cost. A simple state of the art (SoA) planning benchmark
is one where every base station (BTS) uses the complete
frequency band and spreads its power budget equally on every
subchannel. This might not be an efficient solution, especially
in non-regular networks where interference might become
prohibitive for some users.

Most studies on cellular networks are based on the common
optimal planar mobile network, modeled with BTSs placed in a
uniform-size hexagonal grid [1], [2]. One of the particularities

of our work is that we study networks with non-regular
BTS placement, instead of assuming a deterministic BTS
placement on a regular grid. In practice, network deployments
in urban and suburban areas are seemingly more random [3]
than ideally organized, and cell coverage radii are highly
variable, depending on transmission power differences, tower
heights, and user density [4]. They are also heterogeneous, i.e.,
with low and high power BTSs, creating even more complex
situations. In such networks, the number of interfering BTSs
and the amount of interference are highly variable from one
network area to the other [5]. The coverage problem in regular
BTS deployments is simple (e.g., using the SoA planning
benchmark described above) and hence, most of the papers
focus only on performance. In non-regular networks, the
problem of coverage is difficult and cannot be under-estimated.
Hence, planning non-regular networks is intuitively not a
simple task and operating such a network using the SoA
planning benchmark described above is not a good idea.

In this paper, we consider a system with non-regular
(possibly heterogeneous) BTS placement in which all BTSs
use the complete spectrum, and we tackle the problem of
robust power allocation. To this end, we assume that the
frequency band is divided into sub-bands, and each BTS
will transmit with a specific pre-computed power on each
sub-band. The first challenge, in this case, is to parametrize
the power map offline, i.e., to find a suitable number of
sub-bands, and to assign the corresponding power levels on
each sub-band, keeping in mind the non-regular cell pattern
and the possible heterogeneity of the network. The selection
of these parameters should be done with robustness in mind,
i.e., it should allow good performance for a variety of user
distributions and/or densities. This is a desirable feature since
changing the power allocation very frequently depending on
the network state is not very realistic. The second challenge
is to design a scheduling algorithm that takes the power map
into account and is efficient, fair and easy to implement in
real-time.

The contributions of this paper are as follows. First, we
propose an offline planning tool, both for homogeneous and
heterogeneous networks with non-regular BTS placement, that
outputs a robust power map to be followed by the BTSs, for a
given network topology and a given number of sub-bands. In
other words, the tool determines with which power should
each BTS transmit on each sub-band. The power map is
computed prior to the actual network deployment, based solely
on the network topology, with no accurate information on the
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user locations. Then, it is fixed and followed by the BTSs
throughout the network operation. We show that this power
map is robust, in the sense that it performs well independently
of the actual network state, such as the number of users in the
system, their distribution, and their evolution. The proposed
tool solves a non-convex, non-linear, complex optimization
problem, through multiple but simple transformations, based
on signomial and geometric programming.

Second, since the proposed algorithm that outputs the
power map depends on several input parameters, we assess its
performance with respect to those parameters in homogeneous
systems and, then, in heterogeneous systems. Specifically, we
study the impact on the power map performance of each of
these parameters and we give some insights on how to set
them, notably the number of sub-bands. We also quantify
the gain in performance that our robust power map scheme
brings with respect to SoA benchmarks. This study is done
on given snapshots of the network with different numbers of
users already associated to BTSs, and for different network
sizes and topologies.

Note that planning and managing a HetNet is even more
challenging than planning and managing a homogeneous
network, since it requires careful user association and channel
allocation schemes due to the large power budget difference
between the macro (high power) BTSs and the small cells
(the low power BTSs). We show that our robust power map
scheme works very well in a HetNet context and outperforms
the benchmark schemes we study, significantly.

Finally, we evaluate our method on dynamic scenarios,
by simulating users arriving, associating with a BTS,
downloading a file and departing, over a period of time. To
this end, we propose an online local scheduling algorithm
that does not require complex computations. We show that
this scheduling algorithm performs quasi-optimally. Our final
results show that our power map scheme, parametrized solely
knowing the network topology, significantly outperforms the
benchmarks in terms of average delay for both homogeneous
and heterogeneous networks.

In Sec. II, we discuss related work. In Sec. III, we describe
the network model and the notion of a power map. We present
the algorithm to parametrize a power map in Sec. IV. In
Sec. V, we present numerical results for static settings, first
for homogeneous networks, by studying the impact of each
input parameter, and then for HetNets. In Sec. VI, we move to
dynamic settings, propose an online scheduling algorithm that
uses the power map and evaluate the resulting performance
both for homogeneous and heterogeneous networks. We
conclude the paper in Sec. VII.

II. RELATED WORK

Inter-cell interference (ICI) is a major problem in
OFDMA-based systems, occurring when neighboring BTSs
are allocated the same frequency bands [6]. A multitude
of inter-cell interference coordination (ICIC) techniques
have been developed, aiming to reduce ICI [7]. Note that
considering a single cell network in the power allocation
problem, such as in [8], does not take into account ICI and
hence is not practical.

One way to achieve ICIC is through centralized coordinated
scheduling. However, a fully centralized scheduler is complex
to implement in practice [9], since it requires all the channel
gain information in the system and it cannot be computed fast
enough in a real time system, where scheduling is performed
every few milli-seconds. Several distributed schedulers have
been proposed [10], [11]. Such schemes require a large amount
of information exchange between BTSs very frequently, which
is not really feasible either.

A number of studies have focused on downlink power
allocation assuming regular BTS deployment. Authors of
[12] focus on energy efficiency, where the BTSs coordinate
with each other. The proposed scheme requires frequent
data exchange and also frequent power adjustment. Sum-rate
maximization is studied in [13], which lacks fairness among
the users. A computationally expensive optimization algorithm
and a sub-optimal heuristic solution are proposed in [14] for
fractional frequency reuse. The proposed scheme is based on
sum-rate maximization and does not consider robustness as it
needs to be updated for every realization. A dynamic power
allocation for sum-rate maximization is studied for OFDMA
networks in [15], which is also per-realization based. An
iterative algorithm is proposed in [16] for power minimization,
however fairness among users is not considered. Note that
non-regular BTS placement introduces additional challenges
such as non-regular cell serving area (and hence a coverage
problem), as well as different interference patterns due to
different number of interfering BTSs for each cell.

Authors of [17]–[19] study downlink performance using
stochastic geometry, focusing on the average behavior over
all possible realizations of a non-regular network. However,
these studies take a macroscopic view and do not focus in
detail on low-level processes such as scheduling.

Various frequency reuse schemes exist, more practical and
easier to implement than optimized schedulers [6]. One of the
ICIC techniques proposed to improve spectral efficiency is
fractional frequency reuse (FFR) [20]. There are two common
FFR deployment modes: strict FFR and soft frequency reuse
(SFR). In strict FFR [21], a set of channels are re-used by
all BTSs and allocated to users in the cell-center area only,
while the remaining channels, allocated for users in cell-edge
areas, are partitioned across BTSs based on a reuse factor r,
similarly to a fixed frequency reuse scheme. This lowers ICI
while slightly improving spectrum efficiency with respect to a
strict reuse [22] but the spectrum can still be under-utilized [6].

SFR [1], [23] introduces the tuning of BTS transmission
power levels as a mean to reduce ICI. Each BTS can
utilize the entire bandwidth, eliminating the loss in spectral
efficiency that is inherent in strict FFR, while improving
the system performance [24]. The advantage of SFR has
been demonstrated, mostly in hexagonal-grid homogeneous
networks [1], [24], [25], [39], but no effort has been made
to generalize SFR to HetNets and to produce an efficient and
fast online scheduler to work with it. Moreover, SFR only
considers three bands and two power levels, i.e., a high and a
low power level at each sub-band, and hence has a very limited
flexibility. What we propose in this paper can be considered
as a generalization of the traditional SFR method, as we do
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not put any constraint on the number of sub-bands and the
power levels, and we propose a method to parametrize it. In
the following, we will consider the traditional SFR as one of
our benchmarks and compare the performance of the proposed
method with SFR in Sec. V-A3. We will also explain why SFR
cannot be used as is in a HetNet, while our method is versatile
enough to be used.

There has been much work on HetNets focusing on different
RRM processes. As will be explained later in this paper,
processes that are rather simple in homogeneous networks,
such as user association and channel allocation, are more
complex in HetNets, due to the imbalance between the power
budgets of the BTSs [26]. Power minimization is studied in
a HetNet with one macro BTS and one small cell in [27].
Sum-rate maximization is studied for HetNets in [13]. An
iterative algorithm is proposed in [28] for power allocation
and user association in HetNets. Most of the work on power
management in HetNets [30]–[33] relies on a huge information
exchange among the BTSs, which is not actually feasible in a
real network. Also, the solutions proposed in the SoA are not
robust, i.e., they do not work well for different realizations.

Simple channel allocation methods for HetNets have been
studied in [34]. It has been shown that, when all the small
cells and the macro BTSs operate on the whole frequency band
and the power budget of a BTS is shared equally among all
subchannels, the throughput of the users connected to the small
cells is very low since they perceive very high interference
from the macro BTSs. It was also shown that, when the small
cells and the macro BTSs operate on separate bands, the
performance can be significantly increased. In the following,
we will study HetNets and show that the performance can
be drastically improved when all the BTSs can operate on the
same band, if we can compute a robust power map beforehand.
Note that our study is novel in the sense that we focus on
robust power allocation together with user scheduling and user
association, both in static and dynamic settings in a HetNet
with non-regular BTS deployment, while taking fairness into
account. Note that even if we assume that the BTSs can
exchange all the channel information in real time, i.e., the
channel gain between each user-BTS pair, a network-level
efficient power allocation requires complex computations,
which cannot be done in the BTSs (even in powerful servers)
in real time. We will show that using a pre-computed power
map allows for the real time operation of a network in a very
efficient way.

III. SYSTEM MODEL

In this section, we describe the static system model, on
which the first part of this work is based (the second part
of the work uses a dynamic framework). The notations used
throughout the paper are summarized in Table I.

We consider a snapshot of a cellular network, where J is
the set of BTSs and U is the set of deployed users. Note that
all the BTSs in J are macro BTSs for the homogeneous case,
whereas a BTS in J can be either a small cell or a macro BTS
for the HetNet case. Given a user association strategy, let Uj
be the set of users in cell j. We consider an OFDM-based

TABLE I
TABLE OF NOTATIONS

J Set of BTSs
U Set of users
Uj Set of users associated to BTS j
M Total number of channels
T Number of subframes in a frame
Pj Power budget of BTS j
S Set of sub-bands
b Total number of sub-bands
k Number of channels per sub-band
P sj Transmission power of BTS j on the channels of a sub-band s
r Frequency reuse factor
γsu,j SINR per channel between user u and BTS j on sub-band s
N0 Noise power per subchannel
Gu,j Channel gain between a user u and BTS j
Du,j Distance between a user u and BTS j
Γu,j Path loss between a user u and BTS j
Ga Antenna gain
L Equipment losses

Rsu,j Rate seen by user u of BTS j on sub-band s
αsu,j Proportion of time sub-band s is allocated to user u on BTS j
λu Throughput of user u
Λ Throughput geometric mean in a network
Ω Set of calibration realizations ω
Nω Number of users in a calibration realization ω
Π Set of test snapshots π
NΠ Number of users in test snapshots π
ε Small positive number
φ User association parameter for HetNets

system with a total of M orthogonal channels, allocated to
the set of BTSs and a time frame made of T subframes. We
use the terms channels and subchannels interchangeably in the
paper. Channels are assumed to be flat within a frame, i.e.,
the channel gains across different channels between a pair of
nodes are equal. We denote the power budget of BTS j as Pj .

We assume that the frequency band is partitioned into
non-overlapping sets of sub-bands, of equal size k. There are
b sub-bands (i.e., k = M/b). Let S be the set of those b
sub-bands where band sn (n ∈ {1, ..., b}) contains channels
(n− 1)k + 1 to nk. All BTSs can transmit on all sub-bands,
with a different transmission power on each sub-band. We
denote by P sj the power budget of BTS j ∈ J on sub-band
s ∈ S. P sj /k is the per channel power used on all the k
subchannels of sub-band s. A power map is characterized by
b, the set S, and the set of all P sj values, indicating the power
each BTS uses on each sub-band. The per channel signal to
interference and noise ratio (SINR) between user u and BTS
j, on sub-band s ∈ S, is defined as:

γsu,j =

P s
j

k ·Gu,j
N0 +

∑
h∈J ,h6=j

P s
h

k ·Gu,h
(1)

where N0 is the additive white Gaussian noise power, Gu,j
is the channel gain between user u and BTS j, that accounts
for the path loss Γu,j , shadow fading, antenna gain Ga, and
equipment/penetration losses L.

We denote by Rsu,j the rate seen by user u from BTS j on
sub-band s. Rsu,j = k ·f(γsu,j), where f(.) is the rate function
mapping the per channel SINR to the data rate. In practice,
f(.) is a discrete function of the SINR (see Fig. 1), which
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makes the analysis more difficult. In our model, we will use
a continuous approximation for f(.), given in Eq. (2), where
Rmax is the maximum achievable rate set by the practical
modulation and coding scheme, and η and ∆ are constant
parameters. This is very similar to the upper bounding function
proposed in [29].

Rsu,j = k ·min
(
η
(
γsu,j

)∆
, Rmax

)
(2)

For the LTE discrete function given in Table III in [34], the
values of ∆ and η are computed to minimize the area between
the two curves while making sure that the continuous curve
is always an upper bound. The values are: ∆ = 0.43 and
η = 0.168.
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Fig. 1. The original MCS rate function f(γ) and the upper bound we
constitute

Given a power map, the scheduling is local (i.e.,
independent on each BTS) and allocates the sub-bands to users
in a time-division fashion so as to maximize a proportionally
fair objective function. Specifically, let αsu,j be the proportion
of time the channels in sub-band s are allocated to user u in
cell j. Then, the actual throughput λu of user u is:

λu =
∑
s∈S

αsu,j ·Rsu,j ,∀u ∈ Uj (3)

Finally, we consider that, under a proportional fairness
criteria, the metric to use to measure efficiency and fairness
is the geometric mean (GM) throughput [34], written as:

Λ =

(∏
u∈U

λu

)1/|U|

(4)

IV. SELECTION OF A ROBUST POWER MAP

Our goal is to find a robust power map for a given network
topology, i.e., a power map that works well independently
of the actual network state (e.g., the varying number of
concurrent users and their association). In this power map,
each BTS can transmit on each sub-band, with a different
power level. Such a power map will be computed offline
before network deployment, with only the knowledge of the
network topology. Then, it is fixed and followed by the
BTSs throughout the network operation. This power map is
computed with no prior information on the actual user density
and/or distribution in the network.

A. Problem formulation

In order to select a robust power map for a given network
characterized by the set of BTSs J and the number of
available channels M , we generate a priori a set of realizations,
referred to hereafter as calibration realizations. Let Ω be the
set of calibration realizations. Each realization ω corresponds
to a random deployment of users in the network, and is
characterized by the number of users Nω , the Uj for all j ∈ J
and the channel gains for each pair of BTS and user.

In the following, we formulate the problem P1 that takes
a given topology and a set of calibration realizations as
input, and returns one power map as output. Aiming at a
proportional fair objective function, the objective function in
P1 (Eq. (5)) maximizes the arithmetic mean, over all the
calibration realizations ω, of the corresponding GM throughput
Λ(ω) (Eq. (6)).

In constraint (7) and constraint (8), the SINR γsu,j(ω) and
the rate Rsu,j(ω) on sub-band s between BTS j and user u ∈
Uj are computed, for each realization w. In constraint (10), the
throughput λu(ω) of each user in realization ω is computed.
Constraint (11) ensures that the total power used by a BTS on
all the sub-bands does not exceed the maximum transmission
power of a BTS, Pj . Constraint (12) represents the scheduling
constraint, where the sum of the time proportions allocated
for all the users of a BTS on a single sub-band cannot exceed
1, where αsu,j(ω) is the proportion of time allocated to user
u ∈ Uj in sub-band s on realization ω. Finally, constraint (13)
states that all the variables in P1 are continuous and positive.

P1 : max
P s

j ,λu(ω),γs
u,j(ω),

Rs
u,j(ω),αs

u,j(ω)

Z (5)

Z =

∑
ω∈Ω

(∏
u∈U(ω) λu(ω)

) 1
|U(ω)|

|Ω|
(6)

γsu,j(ω) =
P sj ·Gu,j(ω)

k
(
N0 +

∑
h∈J ,h 6=j

P s
h

k ·Gu,h(ω)
) ,

∀j ∈ J , ∀u ∈ Uj(ω), ∀s ∈ S, ∀ω ∈ Ω (7)

Rsu,j(ω) = k · η ·
(
γsu,j(ω)

)∆

,

∀j ∈ J , ∀u ∈ Uj(ω), ∀s ∈ S, ∀ω ∈ Ω (8)
Rsu,j(ω) ≤ k ·Rmax ,

∀j ∈ J , ∀u ∈ Uj(ω), ∀s ∈ S, ∀ω ∈ Ω (9)

λu(ω) =
∑
s∈S

αsu,j(ω) ·Rsu,j(ω) ,

∀u ∈ Uj(ω),∀j ∈ J , ∀ω ∈ Ω (10)∑
s∈S

P sj ≤ Pj , ∀j ∈ J (11)∑
u∈Uj(ω)

αsu,j(ω) ≤ 1 , ∀s ∈ S, ∀j ∈ J , ∀ω ∈ Ω (12)

P sj ≥ 0, λu(ω) ≥ 0, γsu,j(ω) ≥ 0,

Rsu,j(ω) ≥ 0, αsu,j(ω) ≥ 0 (13)
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B. Solving problem P1

Problem P1, as formulated in Sec. IV-A, is a non-convex
problem with non-linear constraints. In order to solve it,
P1 is first transformed to belong to the class of nonlinear
optimization called signomial programming problems, and
more specifically to complementary geometric programming
(GP) problems [35]. GP is a class of nonlinear, non-convex
optimization problems with many useful theoretical and
computational properties. A GP can be easily turned into a
convex optimization problem through a logarithmic change
of variable, and a global optimum can always be efficiently
computed [36]. In a GP problem, all inequality constraints
should be of the form g(x) < 1, with g(x) a posynomial1.
In a complementary GP, a constraint can be of the form
g1(x)/g2(x) < 1, with both g1(x) and g2(x) being
posynomials, even though the ratio of two posynomials is not
a posynomial. A complementary GP can be turned into a series
of GPs that can be solved by further transforming them into
convex problems [35].

1) Transformation into a complementary geometric
program: Problem P1 can be easily transformed into a
complementary GP, by simply re-writing the constraints to
match the typical structure of a complementary GP [36]. First,
since we are solving a maximization problem, we replace the
equality constraints with inequality constraints, which does
not affect the optimal point of the problem. Then, we re-write
the constraints as upper-bounded posynomials, or, when
needed, ratios between two posynomials. The complementary
GP problem, denoted P∗1 , is presented in the Appendix A.

2) Single condensation method for GP: Complementary
GP problems can be solved with the single condensation
method, in which they are converted into a series of GP
problems using an iterative algorithm [35]. To transform
the complementary GP into a GP, the constraints that are
not posynomials (i.e., a ratio of posynomials) should be
transformed into posynomials. This is done by approximating
the denominator with a monomial, while leaving the
numerator as a posynomial. In general, for a posynomial
g(x) =

∑
i hi(x), at a given point x = y, the monomial

approximation g̃y(x) is written as:

g̃y(x) =
∏
i

(hi(x)

βi(y)

)βi(y)

(14)

where:

βi(y) =
hi(y)

g(y)
(15)

In order to find y, the point around which g(x) ≈ g̃y(x),
an iterative approach is used, whose details are given in
Algorithm 1. Note that in the algorithm, s(i) corresponds to
the point, around which we perform the approximation in the
ith iteration. That fixed point is simply a vector consisting of
all the variables in the problem. The variable x in lines 2 and
3 of Alg. 1 are the variables used in Eqs. (6) and (10), which
we approximate as monomials.

1A posynomial is a sum of monomials, of the form

g(x) =
∑K
k=1 dkx

a
(1)
k

1 x
a
(2)
k

2 ...x
a
(n)
k
n

Algorithm 1 Single condensation method for GP

1: Find an initial feasible point s(0) for problem P1

2: At the ith iteration, approximate g(x) with g̃s(i−1)(x)
around the point s(i−1)

3: Form the ith approximated GP problem using the
approximated g̃s(i−1)(x)

4: Solve the ith approximated GP problem (by turning it
into a convex problem through a logarithmic change of
variables) to obtain s(i).

5: if
∣∣∣∣s(i) − s(i−1)

∣∣∣∣ < ε then
6: End
7: else
8: Go to step 2
9: end if

In our case, when re-written in the complementary GP
form, two constraints from P1 become upper-bounded ratios
of posynomials: Eq. (6) and Eq. (10). Hence, those two
constraints should be approximated by posynomials at step 2
of Algorithm 1. For each iteration i, Eq. (6) is approximated
by Eq. (16):

Z · |Ω|∏
w∈Ω

(
(
∏

u∈U(ω) λu(ω))
1

|U(ω)|

qi(ω)

)qi(ω)
≤ 1,

∀j ∈ J , ∀u ∈ Uj(ω) (16)

where qi(ω) is computed as shown in Eq. (17), from the values
of λi−1

u (ω) obtained from the solution at iteration i− 1.

qi(ω) =

(∏
u∈U(ω) λ

i−1
u (ω)

) 1
|U(ω)|

∑
y∈Ω

(∏
u∈U(y) λ

i−1
u (y)

) 1
|U(y)|

(17)

Similarly, Eq. (10) is replaced by Eq. (18), where we omit
the variable ω for brevity:

λu∏
s∈S

(
αs

u,j ·Rs
u,j

θs,iu,j

)θs,iu,j

≤ 1 , ∀j ∈ J , ∀u ∈ Uj (18)

The new exponent θs,iu,j is computed as shown in Eq. (19), from
the values of αs,i−1

u,j and Rs,i−1
u,j , obtained from the solution at

iteration i− 1.

θs,iu,j =
αs,i−1
u,j ·Rs,i−1

u,j∑
l∈S α

l,i−1
u,j ·R

l,i−1
u,j

(19)

Following these approximations, the obtained problem is
a non-linear, non-convex GP. At step 4 in Algorithm 1,
this problem can be solved efficiently by turning it into the
following convex problem, denoted P2, through a logarithmic
change of variables. Let lu(ω) = log λu(ω), z = log(Z),
psj = logP sj , asu,j(ω) = logαsu,j(ω), ysu,j(ω) = log γsu,j(ω),
rsu,j(ω) = logRsu,j(ω), and osu,j(ω) = log θsu,j(ω).
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P2 : max
psj(ω),lu(ω),ysu,j(ω),rsu,j(ω),asu,j(ω)

z (20)

z + log |Ω| −
∑
w∈Ω

q(ω)

 ∑
u∈U(ω)

lu(ω)

|U(ω)|
+ log q(ω)

 ≤ 0

(21)

log

e
(ysu,j(ω)−psj)

(
k · N0 +

∑
h∈J
h6=j

Gu,h(ω) · epsh
)

Gu,j(ω)

 ≤ 0 ,

∀j ∈ J , ∀u ∈ Uj(ω), ∀s ∈ S, ∀w ∈ Ω (22)
rsu,j(ω)−∆ · ysu,j(ω)− log k − log x ≤ 0 ,

∀j ∈ J , ∀u ∈ Uj(ω), ∀s ∈ S, ∀w ∈ Ω (23)
rsu,j(ω)− log k − logRmax ≤ 0 ,

∀j ∈ J , ∀u ∈ Uj(ω), ∀s ∈ S, ∀w ∈ Ω (24)

lu(ω) +
∑
s∈S

θsu,j(ω)
(
osu,j(ω)− asu,j(ω)− rsu,j(ω)

)
,

∀u ∈ Uj(ω), ∀j ∈ J , ∀w ∈ Ω (25)

log
(∑
s∈S

ep
s
j

)
− logPj ≤ 0 , ∀j ∈ J (26)

log
( ∑
u∈Uj(ω)

ea
s
u,j(ω)

)
≤ 0 , ∀s ∈ S, ∀j ∈ J , ∀w ∈ Ω

(27)
psj ≥ δ, t ≥ δ, lu(ω) ≥ δ, ysu,j(ω) ≥ δ,
rsu,j(ω) ≥ δ, asu,j(ω) ≥ δ (28)

V. NUMERICAL RESULTS FOR THE STATIC SETTING

In this section, we will give the numerical results for a static
setting, where we evaluate the performance of the proposed
method over a large number of independent snapshots and
study the impact of the power map parameters. We will first
consider homogeneous networks, followed by heterogeneous
networks. We will evaluate the performance of the proposed
method in a dynamic setting in the next section.

A. Homogeneous networks

We begin with homogeneous networks, where all the BTSs
are macro BTSs with the same high power budget. For this
case, we will first show that the proposed method works
well using a simple example and then evaluate the impact of
each parameter on the network performance. We will finally
compare the performance of SFR with the performance of our
power map method.

1) Results on a toy scenario: Let us first consider the
homogeneous network topology in Fig. 2, with |J | = 5 BTSs,
randomly deployed in an area of 1 unit square. We consider a
system with M = 120 channels, T = 10 subframes in a frame,
and a distance-based path loss model for an urban setting, such
that Γu,j = 128.1 + 37.6 · log(Du,j/1000) dB (if Du,j > 35
m) [37]. We set the power budget of all BTSs to Pj = 46
dBm, the antenna gain of the BTS to Ga = 10 dB, equipment
losses to L = 20 dB, noise power to N0 = −121 dBm, and we
model shadow fading through the normal distribution with zero

mean and standard deviation σ = 8 dB. For the rate function
in Eq. (2), we set the parameters η = 0.168, ∆ = 0.43, and
Rmax = 932.4 Kb/s, approximating the rate function in a
LTE system. Throughout the paper, all computations are done
using the open-source solver Bonmin [38], on a server with
Intel Xeon CPU E5-2697 v2 @ 2.70GHz.
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Fig. 2. Network topology with 5 BTSs.
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Fig. 3. Power map for the network in Fig. 2, obtained for a certain Ω with
|Ω| = 10, Nω = 100 users and b = 5 sub-bands. For each BTS, one
sub-band is used with high power and the others are used with lower power.
Distant BTSs such as BTSs 1 and 3 can use the high power on the same band
due to lower interference.

In the following, we show a numerical example of a power
map computation, for a given set of parameters, i.e., a value
of b, the number of bands, and a set of calibration realizations.
Once found, we evaluate the power map performance on
another set of realizations (called the test set) by computing the
achieved GM throughput for each realization and comparing
it to the one obtained with a classical equal power/fixed
frequency reuse scheme. The impact of all the input parameters
in the power map computation are studied in detail next.

a) Finding the power map: Following all the steps
presented in Sec. IV allows us to solve problem P1, and get a
power map with b sub-bands, for a given topology, based on
a set of calibration realizations Ω. For example, we consider
a set Ω of 10 calibration realizations (i.e., |Ω| = 10). In each
realization ω, we randomly distribute Nω = 100 users, and
assume that a user associates to the BTS that yields the highest
channel gain. We set b = 5 sub-bands. Given Ω, and b = 5, a
representation of the power map obtained using Algorithm 1
is shown in Fig. 3.
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We notice that, for each BTS, there is at least one sub-band
on which the power is relatively higher than on the other
sub-bands. This sub-band is generally different for each BTS,
meaning two BTSs rarely transmit with a high power on the
same channels. On the other hand, while a BTS transmits with
high power on one sub-band, it also transmits on almost all
the other sub-bands, but with relatively lower powers. What
we observe is the following: all BTSs use all the channels,
and allocate few channels with high power (low interference)
to users with relatively bad channel conditions (e.g., farthest
from BTS), and plenty of channels with lower power to users
with better channel conditions (e.g., closest to the BTS). Some
BTSs use very small power on some sub-bands, which creates
almost no interference to the neighboring cells. However, such
sub-bands are still useful since good rates can be offered to
users with high channel gains.

b) Testing the power map: In this section, we test
the performance of the obtained power map on a set of
test realizations, capturing different user distributions in the
network. We continue to assume that a user associates with the
BTS offering the best channel gain. For each test realization,
since the transmit powers of the BTSs on each sub-band P sj
are known, the corresponding inter-BTS interference, SINR
(Eq. (1)), and rate (Eq. (2)) can be directly computed. The
scheduling can be done locally at each BTS, for all the users
associated to it, independently of the other BTSs, by respecting
the computed power map. The scheduling assigns for each user
u, associated to BTS j, the proportion of time, αsu,j , during
which all the channels of sub-band s are allocated to u. We
consider that users of each BTS are optimally scheduled (we
will propose an online practical scheduler in Sec. VI), with
the objective of maximizing the proportional fair objective
function in a cell. The local scheduler in cell j is formulated
below, where the Rsu,j are computed beforehand, given the
power map:

max
λu,αs

u,j

∑
u∈Uj

log (λu) (29)

λu =
∑
s∈S

αsu,j ·Rsu,j , ∀u ∈ Uj (30)∑
u∈Uj

αsu,j ≤ 1 , ∀s ∈ S (31)

λu ≥ 0, αsu,j ≥ 0 (32)

This is a simple problem to solve and given the throughput
of each user in each cell, the GM throughput of the test
realization is computed according to Eq. (4).

Let Π be the set of test realizations, with each realization
π ∈ Π corresponding to a random deployment of users in
the network, U(π), all with the same number of users NΠ.
For each of the realizations in Π, we compute the throughput
geometric mean, ΛPM , obtained when the computed power
map is used by the BTSs. We remind the reader that the power
map was computed independently of Π, using a different set of
realizations Ω. For comparison, we also compute, for the same
realizations, the GM throughput, ΛEP−Rr

, obtained when a
classical fixed frequency reuse scheme, with a reuse factor r,

is used along with a round robin scheduler and equal power
on each subchannel.

Fig. 4 shows the values of the computed throughput
geometric means, ΛPM , ΛEP−R1, and ΛEP−R3, obtained
with the power map in Fig. 3, an equal power/reuse 1 scheme,
and an equal power/reuse 3 scheme, respectively. The results
are averaged on |Π| = 100 snapshots, with Nπ = 100 users
in each. The confidence intervals are at 95%. It is clear in
Fig. 4 that our power map outperforms the classical equal
power maps, for both reuse 1 and reuse 3 schemes. Indeed,
we notice a gain of 42% with respect to equal power/reuse 1,
and a gain of 64% with respect to equal power/reuse 3.
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Fig. 4. Comparison of the throughput geometric mean with the power map
in Fig. 3 (PM), a classical equal power with reuse 1 scheme (EP-R1), and a
classical equal power with reuse 3 scheme (EP-R3).

For the same snapshots in Π, we show in Fig. 5 the
cumulative distribution function (CDF) of the throughputs of
individual users, i.e., the CDF of λu, ∀u ∈ U(π) , ∀π ∈ Π.
It is clear in Fig. 5 that the user throughput values are higher
with our map, and the range to which they belong is wider.
Indeed, while the achieved throughput per user ranges between
0.45 and 16 Mb/s with the equal power/reuse 1 scheme, it is
between 0.95 and 25 Mb/s with our power map. This shows
that the gain in the GM throughput, seen in Fig. 4, is due to
an increase in all the users’ throughputs in the network when
the BTSs follow our map.
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Fig. 5. CDF of the users’ individual throughputs, with the power map in
Fig. 3 (PM), a classical equal power with reuse 1 scheme (EP-R1), and a
classical equal power with reuse 3 scheme (EP-R3).

Note that the BTSs do not coordinate with each other during
their operation. The power map computation is done offline
and all the BTSs need to know is the power map used by each
BTS.
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2) Effects of the algorithm parameters: Computing the
power map depends on several tunable parameters, raising
some questions on its performance with respect to those
parameters. First of all, each power map depends on a
particular network, i.e. a given topology of a precise number
of BTSs |J |. Does the procedure shown in Sec. IV still holds
regardless of the number of BTSs in the network and their
topology? Second, the power map corresponds to a given
number of sub-bands b, which determines the number of
subchannel sets the frequency band is divided into. How many
sub-bands are sufficient for the power map to perform? Third,
finding the power map is based on two given parameters:
the number of calibration realizations |Ω|, and the number of
users in each calibration realization Nω . How many calibration
realizations are enough to obtain a robust power map? How
does the obtained power map with a given Nω perform in
networks with a varying number of users? In the following, we
answer those questions by varying each of those parameters,
and studying their effect on the power map performance and
give useful insights on how to set those parameters.

a) Number of sub-bands: As detailed earlier, the
frequency band is divided into b sub-bands, and each BTS
transmits on the channels of each sub-band with a different
power level. In other words, the number of sub-bands b also
corresponds to the number of possibly different power levels of
a BTS. In the following, we test different values of b to observe
its effect on the power map performance, and to estimate how
many sub-bands (or power levels) are considered to be enough.

For the network topology in Fig. 2 with |J | = 5 BTSs,
we fix |Ω| = 10 calibration realizations, and Nω = 100
users in all calibration realizations ω, and we vary the
number of sub-bands b. For each value of b, we first find
the corresponding power map. Then, we compute the GM
throughput, ΛPM (b), achieved with the resulting power map
in |Π| = 100 test realizations, with Nπ = 100 randomly
distributed users in each realization. For the same realizations,
we compute the GM throughput, ΛEP−R1, achieved with a
classical equal power/reuse 1 scheme (we omit the scheme
with reuse 3 since it performs much worse than reuse 1).

We show the results in Fig. 6. We note that, by simply
dividing the channels into b = 2 sub-bands, i.e., each BTS
transmits with 2 power levels, one for each sub-band, a gain
of 27% in GM throughput can be achieved with respect to
classical equal power/reuse 1 scheme. This gain can go up
to 49% with b = 10 sub-bands. Nevertheless, increasing the
number of sub-bands b, also increases the size of problem
P1, which increases the corresponding solving time, due to
the convergence time of Algorithm 1, although, since it is an
offline computation that is done before deployment, this is not
necessarily a major issue. Note that the gain in capacity, i.e.,
in the arithmetic mean throughput, not shown in the figure, is
18% for b = 2 sub-bands and 30% for b = 10 sub-bands.

b) Number of calibration realizations: Another critical
parameter when computing the power map is the number
of calibration realizations |Ω|. Indeed, the objective function
in P1 (Sec. IV-A) is a maximization of the average of
the throughput geometric means over all the calibration
realizations. Intuitively, the more calibration realizations are
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Fig. 6. Throughput GM as a function of the number of sub-bands b, tested
on |Π| = 100 test realizations, with Nπ = 100 users in each realization,
with a power map obtained for |Ω| = 10 calibration realizations, Nω = 100.

used, the more robust the computed power map. In the
following, we test different values of |Ω| to observe its effect
on the power map robustness, in order to find a suitable value.

For the network topology in Fig. 2, we vary the number
of calibration realizations |Ω|, while fixing Nω = 100 users
in each calibration realization ω, and b = 5 sub-bands. For
|Π| = 100 test realizations, with Nπ = 100 users in each,
we compute the GM throughput ΛPM (|Ω|) achieved with
the resulting power map for each value of |Ω|, and compare
it to the GM throughput ΛEP−R1 achieved with a classical
equal power/reuse 1 scheme (with a performance that does
not depend on |Ω|).

Results in Fig. 7 show that only a few calibration
realizations are enough in order to get a robust power map.
Indeed, with only |Ω| = 5 calibration realizations, the gain in
throughput geometric mean, with respect to the classical equal
power/reuse 1 scheme, is 42%.
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Fig. 7. Throughput geometric mean function of the number of calibration
realizations |Ω| used to obtain the power map, for b = 5 sub-bands, and
Nω = 100 users, tested on |Π| = 100 test realizations, with Nπ = 100
users in each test realization.

c) Number of users: The power map is obtained based on
a set of calibration realizations Ω, each of them with a random
distribution of Nω users, and it is tested on a set of different
realizations Π, each having NΠ users. In the following, we
check whether a power map obtained based on calibration
realizations with Nω users can still be used in networks with
NΠ users, even when NΠ 6= Nω . In other words, we verify
the robustness of the power map with respect to the number
of users in the network.
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For the network topology in Fig. 2, we fix |Ω| = 10
calibration realizations, and b = 5 sub-bands. We vary the
number of users Nω in the calibration realizations, and find
the corresponding power map for each Nω . Then, we take
4 sets of |Π| = 100 test realizations each. Each of the sets
has a different number of users, i.e., NΠ ∈ {25, 50, 100, 200}.
We test the power maps obtained for each value of Nω , on
the different test realization sets, i.e., we compute the GM
throughput ΛPM (Nω, NΠ) for all the combinations (Nω, NΠ).
We compare them to the GM throughput ΛEP−R1(NΠ)
achieved with a classical EP-R1 scheme for the different values
of NΠ .

Results in Fig. 8 show that, even when NΠ 6= Nω , the
throughput GM is not affected. This is why the different
curves corresponding to different values of Nω are actually
indistinguishable, independently of the value of NΠ. Indeed,
there is practically no difference in the outcome when a power
map obtained with calibration realizations with Nω users is
tested on test realizations with NΠ 6= Nω users (but following
the same distribution). This means that, even with a lack of
information on the number of users in a network during the
deployment phase, the initial power map can be obtained based
on calibration realizations with a reasonable value of Nω , and
still be performing well, regardless of the actual number of
users in the network. Moreover, this is an indicator of the
power map robustness facing drops or increases in the number
of users throughout the network deployment.
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Fig. 8. Throughput geometric mean function of the number of users in test
realizations Nπ , for different values of the number of users in calibration
realizations Nω , for b = 5 sub-bands, and |Π| = 100 test realizations.

d) Network topology: All the previous results were
obtained for the particular topology of 5 BTSs shown in Fig. 2.
In order to verify and generalize the results, we repeated the
previous study on a multitude of topologies, with different
numbers of BTSs. All the results are consistent with the
previous ones, and all the conclusions hold, regardless of the
network topology or the number of BTSs in question.

We show an example in Fig. 9 of a network topology with
|J | = 15 BTSs. Fig. 10 shows the power map computed for
this topology, with the following parameters: b = 5 sub-bands,
|Ω| = 10 calibration realizations, and Nω = 150 users in
each calibration realization. We notice that, on each sub-band,
there is at least one BTS that transmits with a significantly
higher power than the others. Most of the BTSs, however,
do not use their full power. Moreover, even though most of
the BTSs transmit on several sub-bands, there is at least one
sub-band per BTS where transmission power is negligible. The
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Fig. 9. Network topology with 15 BTSs.
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Fig. 10. Power map for the network in Fig. 9, obtained for |Ω| = 10
calibration realizations, Nω = 150 users, and b = 5 sub-bands.

distribution of transmission powers on the sub-bands can differ
significantly from one BTS to another. For example, while
BTS 5 has transmission powers ranging from 1 to 32 W, on 4
sub-bands, BTS 7 transmits with powers lower than 1 W on
all the sub-bands.

Nevertheless, we show in Fig. 11 that all BTSs are
operational and serving users. Indeed, Fig. 11 shows the GM
throughput achieved per BTS, i.e., the GM of the throughputs
of the users associated to each BTS. These results are obtained
for |Π| = 100 test realizations, and Nπ = 150 users in each
realization. We compare the achieved GM throughput with
the power map in Fig. 10, and with an equal power/reuse 1
scheme. We note that the achieved GM throughput per BTS is
inversely proportional to the number of users associated to that
BTS. We notice in Fig. 11 that even BTSs with lower powers
on most sub-bands, such as BTS 7, have a significant value
of GM throughput. Such BTSs are mostly serving a small
number of users that are close to them, i.e., with good channel
conditions, and hence, do not need high transmit power.

While b = 5 sub-bands seemed reasonable for the previous
topology of 5 BTSs, we verify in the following if this is still
the case for the topology with 15 BTSs. For the topology
in Fig. 9, we vary b, and compute for each value the GM
throughput, ΛPM (b), achieved with the resulting power map,
for |Π| = 100 test realizations, and Nπ = 150 users in each
realization.

Results are shown in Fig. 12. Similarly to the observations
in Fig. 6, the relative gain in the GM throughput, with respect
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Fig. 11. The throughput GM of users associated to each BTS, with the
power map in Fig. 10 (PM), and a classical equal power with reuse 1 scheme
(EP-R1).

to the equal power/reuse 1 scheme, increases with the number
of sub-bands. The gain is around 40% with b = 5 sub-bands,
and can go up to 46% with b = 15 sub-bands. Thus, b = 5 still
seems to be a good compromise between good performance,
and the size of problem P1, that increases with b.
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Fig. 12. Throughput geometric mean function of the number of sub-bands
b, for |Ω| = 10 calibration realizations, and Nω = 150 users, tested on
|Π| = 150 test realizations, with Nπ = 150 users in each test realization.

Note that we have considered flat channel gains in our
computations. However, our formulation can be generalized
to non-flat fading channels. Since we divide the subchannels
into smaller sub-bands, it would be a reasonable assumption to
have flat subchannels inside a sub-band. Then, even though the
channel gains change among the sub-bands, our formulation
would still work.

3) Comparison with Soft Frequency Reuse and Fractional
Frequency Reuse: A special case of our power map is the
soft frequency reuse (SFR) scheme [1]. SFR corresponds to a
power map with three sub-bands and each BTS uses only one
sub-band with a high power and the other two sub-bands with
a low power. In the remaining of this paper, we will refer to
this scheme as default SFR. The decision of which sub-band
is used with high power by each BTS depends on the location
of the BTSs, e.g., two geographically close BTSs do not use
the same sub-band with high power. While SFR is a simpler
way to allocate power, it is not as flexible as our power map
and we show in the following that it does not perform as well
as a full-fledged power map for some scenarios: i) when there
are hot-spots in the network, ii) when there are multiple BTSs

(more than 3) located close to each other, iii) when the power
budgets of the BTSs differ significantly, e.g., in HetNets. To
illustrate this, we will combine the first two cases and present
some results in the following, while addressing the third case
in the next subsection.

One other benchmark we will use in this subsection
is fractional frequency reuse (FFR) [24]. FFR divides
the subchannels into four sub-bands, where one sub-band
consists of Ms subchannels and the other three contains Mr

subchannels such that Ms + 3Mr = M . Similar to default
SFR, the cells are divided into three reuse groups. The first Ms

subchannels are used by all the cells in a reuse one approach,
with power P ′/Ms on each subchannel, where P ′ is an FFR
parameter. Then, the first Mr subchannels are used by the
first reuse group, the next Mr subchannels are used by the
second reuse group and the last Mr subchannels are used by
the last reuse group. The power on those subchannels will
be P−P ′

Mr
. Therefore, each cell uses Ms + Mr subchannels

where Ms subchannels are used with high interference and Mr

subchannels are used with low interference. Note that, in order
to parametrize an FFR scheme, we need to determine Ms and
P ′. In the following, we parametrize FFR using brute-force
search.

Consider the network topology in Fig. 13 where each circle
represents a macro BTS and the black rectangle in the middle
represents a hot-spot, where the average user density is three
times higher than the rest of the area. Such cases can occur
in an urban scenario.

x-dimension (meters)

0 100 200 300 400 500 600 700 800 900 1000

y
-d

im
e
n

s
io

n
 (

m
e
te

rs
)

0

100

200

300

400

500

600

700

800

900

1000

Fig. 13. An example network with 10 BTSs with a hot-spot represented in
the middle of the network.

For this particular network, we compare six schemes,
which are equal power/reuse 3 (EP-R3), equal power/reuse
1 (EP-R1), default SFR, fractional frequency reuse, power
map with 3 bands (b = 3), and power map with 5 bands
(b = 5). To compute the two power maps (one with 3 bands
and one with 5 bands), we use |Ω| = 10 calibration realizations
with Nω = 100 users in each calibration realization. For the
default SFR, we first create Voronoi cells around the BTSs
and make the power assignment such that no two neighboring
cells use the same sub-band with high power. To determine
the exact low (p) and high (P ) power values, we use the same
|Ω| = 10 calibration realizations and try different ratios P/p
and pick the one that maximizes the arithmetic average of
the GM throughput of the calibration realizations. Similarly,
for FFR, we divide the cells into three groups using Voronoi
cells and make a brute-force search among the values of the
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FFR parameters, which are Ms and P ′. We then evaluate all
schemes on |Π| = 200 test realizations with Nπ = 100 users.
Each user connects to the BTS that yields the highest channel
gain to that user. In Fig. 14, we present the CDF of the GM
throughputs over the 200 realizations for each scheme.
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Fig. 14. CDF of the per test realization GM throughput for different schemes,
for the network shown in Fig. 13, over |π| = 200 test realizations with
Nπ = 100 users in each test realization.

Clearly, all the schemes based on power allocation
performed much better than the state of the art, which is
EP-R1. For example, the average GM throughput of default
SFR is 15% higher than EP-R1 and FFR is 6% better than
EP-R1. The power map with 3 sub-bands performs better than
the default SFR scheme: its average GM throughput is 20%
higher. In terms of arithmetic mean (not shown), the difference
is around 12%. The power map with 5 sub-bands performs
even better, as the average GM difference with the default SFR
increases to 25% and the arithmetic mean difference increases
to 16%. The power map with 5 sub-bands performs 37% better
(in average GM) than FFR parametrized optimally.

This improved performance is the consequence of the
increased flexibility when setting the power levels. However,
we note that the scheme remains practical and uses only
offline computation, without any implication of dynamic
power control.

4) Further analysis on the robustness of the power map:
Next, we perform some more computations to further illustrate
the robustness of the power map. Recall that we compute a
power map beforehand using the calibration realizations and
we test them on the test realizations. Our question in this step
is: What would happen if we had computed instead the best
power map for each test realization? Clearly, this is not a
feasible approach in real time systems since the realizations
can change very fast and adjusting the power allocation so
fast is not a realistic approach. However, this can give us
some insights on the robustness of our power map that we
compute using the calibration realizations. If we can show that
our power map performs almost as well as the case where we
can instantly calculate the best power map for each realization,
then our power map is robust and efficient.

Fig. 15 shows the results, where the realizations are
sorted with respect to decreasing GM throughput when the
best power map is computed for each test realization. The
performance of our robust power map, which is computed
using the calibration realizations, is very close to the
performance of the best power allocation for each test
realization, with an average difference of 6%. Note that this
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Fig. 15. Comparing the robust power map with the best power allocation
per test realization for the network shown in Fig. 13, over |π| = 200 test
realizations with Nπ = 100 users in each test realization

small difference is because our robust power map already
captures the features of many different calibration realizations
and hence it works well over different test realizations.

To illustrate that a power map computed for a random
realization could perform badly for other realizations and
hence, the importance to use a robust power map, we perform
the following experiment. Using the same network as above,
we compare the performance of the best power map per
realization, the power map we compute using the calibration
realizations, and a number of power maps that are computed
using single random realizations. Specifically, we pick five
random realizations among the 200 realizations we have
studied above and get the best power map for each of these five
realizations. Then, we apply these power maps to all the 200
realizations and obtain the average GM throughput. Our aim is
to show that the power map should be computed using many
calibration realizations and the power maps that are obtained
using single random realizations do not perform well enough.
Table II shows the results. In the table, best corresponds to
the best power map per realization, PM corresponds to our
power map that we compute over the calibration realizations,
and the other power maps corresponds to the random power
maps obtained by single random realizations.

TABLE II
GM THROUGHPUT PERFORMANCE OF DIFFERENT POWER MAPS FOR THE
NETWORK SHOWN IN FIG. 13, OVER |π| = 200 TEST REALIZATIONS WITH

Nπ = 100 USERS IN EACH TEST REALIZATION

Best PM RM1 RM2 RM3 RM4 RM5
Mean 4.43 4.16 3.70 3.48 3.59 3.46 3.79
Var. 0.0812 0.0788 0.0959 0.0885 0.0997 0.0912 0.1122

Table II shows that the highest average GM throughput
is obtained when the best power map is selected for each
realization (but this is not practical). The second best
performance is obtained when our power map is used. Note
that the average GM throughput of the power maps that we
obtain for single random realizations are lower than the one
of our power map. When their performance is relatively close,
e.g., the performance of RM5, the variance of GM throughput
for that random power map is quite high, i.e., much higher
than the variance for our power map, which means that the
performance of the power map obtained with a single random
realization strictly depends on the network realization.
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5) Validation of the upper bounding rate function: Recall
that we use the upper bounding rate function that is shown
in Fig. 1 to simplify our calculations. In this section, we will
illustrate the tightness of the results obtained with this function
by showing that a feasible solution to the problem with the
original piece-wise constant rate function yields very similar
performance. The feasible is constructed from the solution to
the upper bounding problem. To this end, we consider the
network shown in Fig. 13 and we evaluate the performance of
all six power allocation schemes shown in Fig. 14.

Table III shows the differences between the upper bounds
and the feasible solutions.For example, a value of 3.47 in
Table III means the performance with the original LTE
function is 3.47% lower than the performance with the upper
bounding rate function.

TABLE III
DIFFERENCE (IN %) OF GM THROUGHPUT PERFORMANCE BETWEEN THE

UPPER BOUNDING RATE FUNCTION AND THE LTE RATE FUNCTION FOR
THE NETWORK SHOWN IN FIG. 13, OVER |π| = 200 TEST REALIZATIONS,

FOR DIFFERENT POWER ALLOCATION SCHEMES

EP-R3 EP-R1 FFR SFR PM3 PM5
Nπ = 50 3.87 4.81 3.57 3.39 3.31 3.29
Nπ = 100 3.91 4.70 3.53 3.46 3.32 3.19

Table III indicates that the upper bound is tight since
the average GM throughput performances with the two rate
functions are very close to each other, i.e., around 3-4%.
Furthermore, Table III shows that the number of users does
not have much effect on the difference between the two rate
functions.

B. Heterogeneous networks

Next, we evaluate our power map method in HetNets, i.e.,
cellular networks that comprise low-power small cells (SC),
as well as high power macro cells [26]. The addition of small
cells improves the throughput seen by users [34]; however,
deploying a HetNet requires complex channel allocation and
new user association schemes.

Chanel allocation determines which subchannels should
be used by each BTS and this has to be done carefully
because of the very large difference in the power budgets
of the macro BTSs and the small cells. When they operate
on the same channel, the users associated to the small cells
would receive a very high level of interference from the
macro BTSs, unless power management is done appropriately.
Since power management had been so far very simple, i.e.,
the power budget was divided equally among all available
channels, channel allocation had to be done in a way that
avoided interference (the onus was on channel allocation).
For example, orthogonal deployment (OD) was proposed, that
simply separates the frequency band of the small cells and the
macro BTSs. Specifically, k subchannels are allocated to the
small cells and the remaining M−k subchannels are allocated
to the macro BTSs. In this case, macro BTSs do not create
interference with SCs. OD was shown to work much better
than a scheme where all BTSs used all the channels (reuse-1
over all BTSs) and the power budget of each BTS was shared

equally over the channels [34]. In the following, we will show
that OD is not a very efficient method, and that when all the
BTSs operate on the same frequency band with a robust power
map the system performance can be increased drastically.

User association is also more challenging in HetNets than
in homogeneous networks. In homogeneous networks, a user
association policy that connects a user to the BTS that yields
the highest channel gain to that user is simple and very
efficient. However, using such a user association in a HetNet
would make most of the users to associate to the macro BTSs.
An association scheme for HetNets, called Small Cell First
(SCF), was proposed in [34], which we will also use in the
following. For this method, only for user association purpose,
we assume that all the BTSs, including the small cells, use all
the subchannels with reuse-1 and spread their power evenly
over all channels and we compute the SINR seen by each user
from each BTS. Then, a user associates to a small cell if the
per subchannel SINR that the user receives from that small cell
is greater than a threshold φ. Otherwise, it associates to the
cell that yields the highest SINR. SCF with reuse-1 performs
very well as long as the selection of φ is done properly, as it
will be shown later.
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Fig. 16. The heterogeneous network topology we study with 5 macro BTSs
and 15 small cells.

We consider the HetNet illustrated in Fig. 16. In our model,
all macro BTSs are identical, all small cells are identical
and they all belong to the same operator. We compute the
power map for this HetNet with the same method described
in Sec. IV-B using |Ω| = 10 calibration realizations with
Nω = 100 users in each calibration realization. Note that we
compute a different power map for different values of the user
association parameter φ. Then, we compare the performance of
the power map with the three benchmark schemes described in
Table IV. Basically, all three schemes employ OD for channel
allocation, but they allocate power differently. Default SFR
is used in both the macro BTSs and the small cells in the
first scheme (both schemes are parametrized independently of
each other). Similar to the previous section, we determine the
default SFR power allocation per type of BTSs using Voronoi
cells. For the second scheme, macro BTSs use the default
SFR scheme, whereas the small cells allocate equal power
to all their subchannels, i.e., EP-R1. For the third scheme,
both macro BTSs and small cells use EP-R1. Recall that
OD is used and hence the small cells and the macro BTSs
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operate on different bands. The three schemes use the SCF
user association.

TABLE IV
BENCHMARK SCHEMES FOR HETNETS

Scheme 1 Scheme 2 Scheme 3
Channel Allocation OD OD OD

Power Allocation (macro BTSs) Default SFR Default SFR EP-R1
Power Allocation (small cells) Default SFR EP-R1 EP-R1

We set the power budget of the small cells to 30 dBm. The
path loss between a user u and a small cell j is computed as
Γu,j = 140.7 + 36.7 · log(Du,j/1000) dB . The antenna gain
of the small cells is set to 5 dBi. Fig. 17 shows the GM
throughput averaged over |Π| = 100 test realizations, with
Nπ = 100 users, as a function of the user association
parameter φ for the three benchmark schemes as well as the
power map scheme with b = 5. For the three benchmark
schemes, for each value of φ, we found the value of k that
yielded the largest averaged GM throughput.
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Fig. 17. GM throughput comparison for different schemes for the HetNet
shown in Fig. 16, as an average of |π| = 100 test realizations with Nπ = 100
users in each realization, with respect to the user association parameter φ.

Clearly, the power map outperforms all the other schemes.
When the best φ is selected for each scheme, the power map
outperforms scheme 1, which uses default SFR for both macro
BTSs and the small cells, by 58%, and scheme 3 by 79%. The
difference in terms of the arithmetic mean throughput is 57%,
58%, and 69% for schemes 1, 2, and 3, respectively. Therefore,
the proposed power map scheme is even more efficient for the
case of HetNets.

VI. NUMERICAL RESULTS FOR THE DYNAMIC SETTING

In the previous sections, we evaluated the power map
performance on network snapshots, in which users are already
in the network, and associated to the BTSs. The scheduling
was done optimally. Solving these snapshot problems allowed
us to verify the advantages of using a power map, as well
as its robustness. In order to verify the performance of the
power map in more practical scenarios, we consider in this
section a dynamic network setting. Similar to the previous
section, we first evaluate the performance of the power map
in homogeneous networks and then in HetNets.

A. Homogeneous networks

We begin our discussion with homogeneous networks. We
first propose an online scheduler and then investigate the delay

performance of the proposed method. We also verify that the
previous results hold for different practical user associations.

1) Dynamic settings: For a given network topology, we
compute a power map with b sub-bands using the planning
tool described above. Hence, the power of each BTS on
each sub-band is known. We assume that users appear in the
network in random positions, with their arrival following a
Poisson process, with an average arrival rate λ (s−1). Each
user must first associate to a BTS, and then download a file
of fixed size F . The download duration for user u is tu and,
once the file is downloaded, the user leaves the network.

a) User association policies: We compare two
association policies. The first policy is Best of Best
SINR (given in Eq. (33)), in which a user u associates to the
BTS j′ from which it receives the highest maximum SINR
(Eq. (1)) over all the sub-bands. The second is denoted Load
Aware (given in Eq. (34)), in which a user u associates to the
BTS j∗ in which it would see the the highest maximum ratio
of the achievable per band rate (Eq. (2)) over the number
of users associated to that BTS, |Uj |, over all sub-bands.
Unlike Best of Best SINR, this user association policy not
only accounts for the peak rate a user can get from a BTS on
each sub-band, but also for the BTS load, represented by the
number of users associated to it.

j′ = arg max
j∈J , s∈S

(
γsu,j

)
(33)

j∗ = arg max
j∈J , s∈S

(
Rsu,j
|Uj |

)
(34)

b) User scheduling algorithm: Once user u associates
to BTS j, the scheduling is done locally at BTS j, for
all the users associated to it, independently of the other
BTSs. In the ideal case, the users of each BTS are optimally
scheduled (see Sec. V-A1b, Eq. (29)-(32)). However, in
practice, the BTSs are not equipped to solve such an
optimization problem fast enough. Therefore, in the following,
we propose a simple opportunistic scheduling algorithm that
performs quasi-optimally and can be implemented very fast.
Note that Round Robin (RR) is used on all equal power
schemes [34] and that, since no practical scheme has been
designed for default SFR, we use our scheduling in that case
as well, since default SFR is just a special case of our power
map scheme.

The heuristic online scheduling we propose is performed
locally by each BTS on a per-subframe basis. Recall that a
frame consists of T subframes. When we have the power
map for all cells, we can compute the rate each user
can obtain during a subframe on each sub-band. Then,
instead of computing the schedule for all sub-bands and all
subframes simultaneously using Eq. (29)-(32), we schedule
each sub-band one by one (i.e., sequentially) at each subframe
in a manner similar to RR. Let rsu,j be the rate user u of BTS
j receives if sub-band s is allocated to that user in a subframe,
and Ψu,j be the total rate user u of BTS j has received until the
allocation of this sub-band in that subframe. In the following,
we assume that the whole sub-band is assigned to a user during
a subframe. Then, at a given subframe t, if we want to decide
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to which user is allocated sub-band s of BTS j, we need to
solve the following problem:

max
xs
u,j

∑
u∈Uj

log
(
Ψu,j + xsu,j · rsu,j

)
(35)

s.t.
∑
u∈Uj

xsu,j = 1 , ∀s ∈ S (36)

where xsu,j is a binary variable that determines if sub-band s
of BTS j is allocated to user u at that subframe. The objective
function is the GM throughput of the users after the allocation
of sub-band s to a user in that subframe.

Lemma VI.1. The optimal point of the above optimization
problem is the same with the optimal point of the following
problem:

arg max
u∈Uj

rsu,j
Ψu,j

(37)

Proof of the lemma is given in Appendix B.
Using the Lemma, we design the following algorithm that

schedules the users of a cell j for a given subframe.

Algorithm 2 Online scheduling implementation in cell j at a
given subframe

1: Sort sub-bands S according to power per subchannel in
an ascending order

2: s = 1
3: while s ≤ S do
4: u∗ = argmax

u∈Uj
rsu,j/Ψu,j

5: Allocate sub-band s to user u∗ during this subframe.
6: Ψu∗,j = Ψu∗,j + rsu∗,j
7: s = s+ 1
8: end while
9: Ψu,j ← ε, ∀u ∈ Uj after an arrival to, or departure from,

cell j.

Algorithm 2 schedules each sub-band one by one using a
very simple equation for a given subframe. This algorithm
aims at being fair for the group of users currently in the cell,
hence we set Ψu,j to a very small positive number ε for all
users in cell j after an arrival or departure in cell j.

We illustrate the performance of the online heuristic
scheduler by comparing it to the optimal scheduler (see
constraints (29-32)). We consider a static setting using the
homogeneous network shown in Fig. 13 and the power map
with b = 3 bands obtained for this network using |Ω| =
10 calibration realizations with Nω = 100 users in each
realization. We compare the GM throughput CDF curves of the
two schedulers on |Π| = 200 test realizations with Nπ = 100
users in each realization in Fig. 18.

Fig. 18 shows that the two schedulers yield almost identical
GM throughput performance, and hence the online scheduling
algorithm performs quasi-optimally.

2) Simulation results: We consider the topology with 5
BTS depicted in Fig. 2. We compare the average user
download duration in two scenarios, 1) for the power map
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Fig. 18. CDF of the per test realization GM throughputs for the two
schedulers, for the network shown in Fig. 13 over |π| = 200 test realizations
with Nπ = 100 users in each test realization.

with b = 5 sub-bands (Fig. 3) and 2) the SoA benchmark
(EP-R1).

Since the number of users in each cell varies over time, as
the users enter and leave the network, the per-frame throughput
of users changes over time. Based on the different per-frame
throughputs of a user u, we compute the time tu spent by user
u in the network, i.e., the time it takes for u to download the
file of fixed size. Finally, we compute the average user delay
in the network as follows:

τ =
∑
u∈U

tu/ |U|

Fig. 19 shows the average user delay τ in each of the
studied cases, as a function of the average user arrival rate
λ, with a confidence interval at 95%. The average user delay
is computed based on the batch means method, i.e., running
a very long simulation, dividing it up into several batches of
equal duration, then computing the mean over the batches in
the steady state.

We can make at least three observations on Fig. 19. First,
our power map leads to significant gains in terms of user delay,
which corroborates the previous results based on snapshots.
For example, the maximum arrival rate to get an average
delay of 10 s is about 0.2 users per second with the SoA
equal power/reuse 1 benchmark, while it is about 0.45 users
per second for our power map (more than double). Second,
as expected, the load-aware user association outperforms the
Best of Best SINR association. Third, while the power map
was obtained for a user association policy based on channel
gains in the calibration phase, we show that this power map
is performing well, even when different (more realistic) user
association policies are adopted during network operation.

In summary, we propose the following complete suite of
radio resource management processes for an homogeneous
network: i) A planning tool to compute a power map (using
Algorithm 1); ii) An online scheduling algorithm (Algorithm
2); iii) A load-aware user association given by Eq. (34).
This suite of processes outperforms significantly the SoA
suite based on i) EP-R1, ii) Round Robin scheduling; iii) A
load-aware user association.

B. Heterogeneous networks

In the following, we will assess the performance of the
power map in HetNets in the same dynamic setting as above.
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Fig. 19. Average user delay to download a file of 50 MB, as a function of
the user arrival rate λ in the network of Fig. 2, with the SoA benchmark (EP)
and with the power map (PM) obtained for |Ω| = 10 calibration realizations,
Nω = 100, and b = 5 sub-bands, for different user association schemes (Best
of Best SINR and Load Aware).

We consider the HetNet topology in Fig. 16. We compare the
performance of a benchmark OD scheme, which separates the
frequency bands of the macro BTSs and the small cells, with
default SFR among the macro BTSs and EP-R1 among the
small cells (scheme 2 in Sec. V-B), denoted as SFR - EP-R1
below.

For user association, we use, for both schemes, a
combination of SCF and Best of Best SINR. Specifically, given
the parameters of the schemes (the power map or the value of
k, the number of subchannels allocated to the small cells, for
OD) as well as φ (we will discuss how φ is obtained later), we
first compute the SINR values for each user from each BTS
on each sub-band. Then, we associate a user to a small cell
if the maximum SINR on any of the bands from that small
cell is higher than the threshold φ. Otherwise, we associate
that user to the BTS from which it receives the highest SINR
from on any of the sub-bands. Assume Js denotes the set of
small cells. Then, a user u associates to cell j′ according to
the following rule:

j′ =

{
argmaxj∈Js, s∈S

(
γsu,j

)
, if maxj∈Js, s∈S

(
γsu,j

)
≥ φ

argmaxj∈J , s∈S
(
γsu,j

)
, otherwise

(38)
For our method, we use the power map that we obtained

in Sec. V-B with b = 5 bands. Recall that, as shown in
Fig. 17, we computed different power maps for different user
association parameters. In this section, we use the one that
maximizes the average GM throughput. However, since we
are using a different user association policy here, we need a
new value of φ for that same power map. To this end, we do
a second static phase, where we now fix the power map and
find the best φ for the new user association policy.

To find a robust value of φ, we perform some computations
again in the static setting both for the power map and the OD
SFR - EP-R1 schemes. We perform computations for |Π| =
100 test realizations with 100 users, and try different values
of φ for the power map and different values of φ and k for
the OD SFR - EP-R1 scheme. Then, we pick the values that
maximize the average GM throughput for the two schemes.
For the power map, φ = 3 dB gives the best results, whereas

φ = 0 dB and k = 48 gives the best results for the OD SFR
- EP-R1 scheme.

The average delay performance of the two schemes is given
in Fig. 20 when each user arrives at the network and leaves
after completing the download of a 50 MB file. We use the
same local scheduling algorithm as in Algorithm 2. 2
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Fig. 20. Average user delay to download a file of 50 MB, as a function of the
user arrival rate λ in the network of Fig. 16, with OD SFR - EP-R1 scheme
and with the power map obtained for |Ω| = 10 calibration realizations, Nω =
100, and b = 5 sub-bands.

Clearly, the results of the static setting also hold for the
dynamic setting, i.e., our power map scheme outperforms
significantly the benchmark. For example, the power map can
provide an average delay of 20 s to an arrival rate of 0.92 user
per second, whereas this number is 0.6 users per second for
the benchmark, a 50% gain.

In summary, our power map scheme performs significantly
better than SoA solutions in dynamic settings as well,
complemented by a fast online scheduling algorithm
(Algorithm 2) and an easy to parametrize user association
scheme, based on a combination of SCF and Best of Best
SINR. Our results demonstrate that complex dynamic solutions
are not necessarily required to outperform SFR: the power
map can be computed offline, based only on network topology
information, while remaining robust in dynamic scenarios.

VII. CONCLUSION

We propose in this paper a robust tool to plan both
homogeneous and heterogeneous networks with non-regular
BTS placement along with the online RRM processes that
go with it. More precisely, we present an offline algorithm
capable of finding a robust power map, that determines
the transmission power level of each BTS on the different
sub-bands. This power map is computed prior to the network
operation, with the sole knowledge of the network topology,
and no coordination between the BTSs. The algorithm only
takes as input a set of realizations, denoted as calibration
realizations, representing different network snapshots. Once
computed, the power map is fixed and followed by the BTSs
in the network throughout its operation.

We also propose an online scheduling algorithm and an
easy to use user association scheme, resulting in a full

2Note that our benchmark for the HetNets is different than the one in the
homogeneous case since the benchmark we used in the homogeneous case
cannot be used directly for HetNets as a solution based on a reuse 1 channel
allocation among all cells (macro and small) and the same user association
policy as for the homogeneous case works very poorly as shown in [34].



16

suite of RRM processes. Numerical results show that our
framework drastically outperforms both the classical reuse-1
scheme and the default SFR scheme, both in homogeneous
and heterogeneous network settings.

We leave for future work, the extension to our planning
techniques to other bands (e.g., mmWave) and other
PHY technologies (e.g., MIMO or Non-Orthogonal Multiple
Access). We believe that robust planning techniques such as
the one we have proposed here are going to be even more
useful in 5G, where QoS (in particular delay), reliability and
availability are critical for some applications.

APPENDIX A
THE COMPLEMENTARY GP PROBLEM

Problem P1, as formulated in Sec. IV-A, is a non-convex
problem with non-linear constraints. In order to solve it, we
first transform it into a complementary GP, denoted P∗1 , by
re-writing its constraints to match the typical structure of a
complementary GP [36], as explained in Sec. IV-B1.

P∗1 : max
P s

j ,λu(ω),γs
u,j(ω),Rs

u,j(ω),αs
u,j(ω)

Z (39)

Z · |Ω|∑
ω∈Ω

(∏
u∈U(ω) λu(ω)

) 1
|U(ω)|

≤ 1 (40)

γsu,j(ω) · k · N0 + γsu,j(ω) ·
∑
h∈J ,h 6=j P

s
h ·Gsu,h

P sj ·Gu,j(ω)
≤ 1 ,

∀j ∈ J , u ∈ Uj(ω), s ∈ S, ω ∈ Ω (41)
Rsu,j(ω)

k · η ·
(
γsu,j(ω)

)∆
≤ 1 ,

∀j ∈ J , u ∈ Uj(ω), s ∈ S, ω ∈ Ω (42)
Rsu,j(ω)

k ·Rmax
≤ 1 , ∀j ∈ J , u ∈ Uj(ω), s ∈ S, ω ∈ Ω (43)

λu(ω)∑
s∈S α

s
u,j(ω) ·Rsu,j(ω)

≤ 1, ∀j ∈ J , u ∈ Uj(ω), ω ∈ Ω

(44)∑
s∈S P

s
j

Pj
≤ 1 , ∀j ∈ J (45)∑

u∈Uj(ω)

αsu,j(ω) ≤ 1 , ∀s ∈ S, j ∈ J , ω ∈ Ω (46)

P sj ≥ 0, λu(ω) ≥ 0, γsu,j(ω) ≥ 0, Rsu,j(ω) ≥ 0, αsu,j(ω) ≥ 0
(47)

APPENDIX B
PROOF OF LEMMA VI.1

Proof. The objective function of the optimization problem can
be rewritten as follows:

max
xs
u,j

∑
u∈Uj

log (Ψu,j) +
∑
u∈Uj

log

(
1 +

xsu,j · rsu,j
Ψu,j

)
(48)

Note that the first term is a constant. Therefore, we only need
to focus on maximizing the second term.

max
xs
u,j

∑
u∈Uj

log

(
1 +

xsu,j · rsu,j
Ψu,j

)
(49)

Since only one user will receive sub-band s in the subframe
under consideration, xsu,j will be zero for all other users and
hence only one term of the sum will not be equal to zero. So,
at the optimal point, the value of the objective function will be
log
(

1 +
rsu∗,j
Tu∗,j

)
, where u∗ is the user sub-band s is allocated

to. Therefore, the objective function is maximized when
the user that maximizes the log

(
1 +

rsu,j

Ψu,j

)
term receives

sub-band s. This is equivalent to finding the user with
maximum

rsu,j

Ψu,j
among all users in Uj , which is the same as

Eq. (37).
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