1,646 research outputs found

    Abnormality Detection in Mammography using Deep Convolutional Neural Networks

    Full text link
    Breast cancer is the most common cancer in women worldwide. The most common screening technology is mammography. To reduce the cost and workload of radiologists, we propose a computer aided detection approach for classifying and localizing calcifications and masses in mammogram images. To improve on conventional approaches, we apply deep convolutional neural networks (CNN) for automatic feature learning and classifier building. In computer-aided mammography, deep CNN classifiers cannot be trained directly on full mammogram images because of the loss of image details from resizing at input layers. Instead, our classifiers are trained on labelled image patches and then adapted to work on full mammogram images for localizing the abnormalities. State-of-the-art deep convolutional neural networks are compared on their performance of classifying the abnormalities. Experimental results indicate that VGGNet receives the best overall accuracy at 92.53\% in classifications. For localizing abnormalities, ResNet is selected for computing class activation maps because it is ready to be deployed without structural change or further training. Our approach demonstrates that deep convolutional neural network classifiers have remarkable localization capabilities despite no supervision on the location of abnormalities is provided.Comment: 6 page

    Computer aided monitoring of breast abnormalities in X-ray mammograms

    Get PDF
    X­ray mammography is regarded as the most effective tool for the detection and diagnosis of breast cancer, but the interpretation of mammograms is a difficult and error­prone task. Computer­aided detection (CADe) systems address the problem that radiologists often miss signs of cancers that are retrospectively visible in mammograms. Furthermore, computer­aided diagnosis (CADx) systems assist the radiologist in the classification of mammographic lesions as benign or malignant[1]. This paper details a novel alternative system namely computer­aided monitoring (CAM) system. The designed CAM system can be used to objectively measure the properties of a suspected abnormal area in a mammogram. Thus it can be used to assist the clinician to objectively monitor the abnormality. For instance its response to treatment and consequently its prognosis. The designed CAM system is implemented using the Hierarchical Clustering based Segmentation (HCS) [2] [3] [4] process. Brief description of the implementation of this CAM system is as follows : Using the approximate location and size of the abnormality, obtained from the user, the HCS process automatically identifies the more appropriate boundaries of the different regions within a region of interest (ROI), centred at the approximate location. From the set of, HCS process segmented, regions the user identifies the regions which most likely represent the abnormality and the healthy areas. Subsequently the CAM system compares the characteristics of the user identified abnormal region with that of the healthy region; to differentiate malignant from benign abnormality. In processing sixteen mammograms from mini­MIAS [5], the designed CAM system demonstrated a success rate of 100% in differentiating malignant from benign abnormalities

    An Efficient Automatic Mass Classification Method In Digitized Mammograms Using Artificial Neural Network

    Full text link
    In this paper we present an efficient computer aided mass classification method in digitized mammograms using Artificial Neural Network (ANN), which performs benign-malignant classification on region of interest (ROI) that contains mass. One of the major mammographic characteristics for mass classification is texture. ANN exploits this important factor to classify the mass into benign or malignant. The statistical textural features used in characterizing the masses are mean, standard deviation, entropy, skewness, kurtosis and uniformity. The main aim of the method is to increase the effectiveness and efficiency of the classification process in an objective manner to reduce the numbers of false-positive of malignancies. Three layers artificial neural network (ANN) with seven features was proposed for classifying the marked regions into benign and malignant and 90.91% sensitivity and 83.87% specificity is achieved that is very much promising compare to the radiologist's sensitivity 75%.Comment: 13 pages, 10 figure

    Healthcare technologies and professional vision

    Get PDF
    This paper presents some details from an observational evaluation of a computer assisted detection tool in mammography. The use of the tool, its strengths and weaknesses, are documented and its impact on reader's 'professional vision' (Goodwin 1994) considered. The paper suggests issues for the design, use and, importantly, evaluation of new technologies in everyday medical work, pointing to general issues concerning trust – users’ perception of the dependability of the evidence generated by such tools and suggesting that evaluations require an emphasis on the complex issue of what technologies afford their users in everyday work

    Improving medical image perception by hierarchical clustering based segmentation

    Get PDF
    It has been well documented that radiologists' performance is not perfect: they make both false positive and false negative decisions. For example, approximately thirty percent of early lung cancer is missed on chest radiographs when the evidence is clearly visible in retrospect. Currently computer-aided detection (CAD) uses software, designed to reduce errors by drawing radiologists' attention to possible abnormalities by placing prompts on images. Alberdi et al examined the effects of CAD prompts on performance, comparing the negative effect of no prompt on a cancer case with prompts on a normal case. They showed that no prompt on a cancer case can have a detrimental effect on reader sensitivity and that the reader performs worse than if the reader was not using CAD. This became particularly apparent when difficult cases were being read. They suggested that the readers were using CAD as a decision making tool instead of a prompting aid. They conclude that "incorrect CAD can have a detrimental effect on human decisions". The goal of this paper is to explore the possibility of using hierarchical clustering based segmentation (HSC), as a perceptual aid, to improve the performance of the reader

    Breast Cancer Automatic Diagnosis System using Faster Regional Convolutional Neural Networks

    Get PDF
    Breast cancer is one of the most frequent causes of mortality in women. For the early detection of breast cancer, the mammography is used as the most efficient technique to identify abnormalities such as tumors. Automatic detection of tumors in mammograms has become a big challenge and can play a crucial role to assist doctors in order to achieve an accurate diagnosis. State-of-the-art Deep Learning algorithms such as Faster Regional Convolutional Neural Networks are able to determine the presence of an object and also its position inside the image in a reduced computation time. In this work, we evaluate these algorithms to detect tumors in mammogram images and propose a detection system that contains: (1) a preprocessing step performed on mammograms taken from the Digital Database for Screening Mammography (DDSM) and (2) the Neural Network model, which performs feature extraction over the mammograms in order to locate tumors within each image and classify them as malignant or benign. The results obtained show that the proposed algorithm has an accuracy of 97.375%. These results show that the system could be very useful for aiding physicians when detecting tumors from mammogram images.Ministerio de Economía y Competitividad TEC2016-77785-
    • …
    corecore