152 research outputs found

    Ring Exploration with Oblivious Myopic Robots

    Get PDF
    The exploration problem in the discrete universe, using identical oblivious asynchronous robots without direct communication, has been well investigated. These robots have sensors that allow them to see their environment and move accordingly. However, the previous work on this problem assume that robots have an unlimited visibility, that is, they can see the position of all the other robots. In this paper, we consider deterministic exploration in an anonymous, unoriented ring using asynchronous, oblivious, and myopic robots. By myopic, we mean that the robots have only a limited visibility. We study the computational limits imposed by such robots and we show that under some conditions the exploration problem can still be solved. We study the cases where the robots visibility is limited to 1, 2, and 3 neighboring nodes, respectively.Comment: (2012

    El algoritmo HyRPNI y una aplicación en bioinformática

    Get PDF
    Proponemos un algoritmo de inferencia gramatical para lenguajes regulares que permite ahorrar cómputo al usar dos criterios diferentes para elegir los estados a ser procesados, un criterio se usa en la primera fase del proceso de inferencia (al principio) y el otro en el resto del proceso. Realizamos experimentos para observar el desempeño del algoritmo, para aprender sobre el tamaño ideal de su primera fase y para mostrar su aplicación en la solución de un problema específico en bioinformática: la predicción de sitios de corte en poliproteínas codificadas por virus de la familia Potyviridae./ We propose a grammar inference algorithm for regular languages which saves computational cost by using two different criteria to choose states to be processed: one in the first phase of the inference process (the beginning) and another for the rest of the process. We applied experiments to observe performance of the algorithm, to learn about the best size of its first phase and to show results of its application to solve a specific problem in Bioinformatics: the cleavage site prediction problem in polyproteins encoded by viruses of the Potyviridae family

    New techniques for functional testing of microprocessor based systems

    Get PDF
    Electronic devices may be affected by failures, for example due to physical defects. These defects may be introduced during the manufacturing process, as well as during the normal operating life of the device due to aging. How to detect all these defects is not a trivial task, especially in complex systems such as processor cores. Nevertheless, safety-critical applications do not tolerate failures, this is the reason why testing such devices is needed so to guarantee a correct behavior at any time. Moreover, testing is a key parameter for assessing the quality of a manufactured product. Consolidated testing techniques are based on special Design for Testability (DfT) features added in the original design to facilitate test effectiveness. Design, integration, and usage of the available DfT for testing purposes are fully supported by commercial EDA tools, hence approaches based on DfT are the standard solutions adopted by silicon vendors for testing their devices. Tests exploiting the available DfT such as scan-chains manipulate the internal state of the system, differently to the normal functional mode, passing through unreachable configurations. Alternative solutions that do not violate such functional mode are defined as functional tests. In microprocessor based systems, functional testing techniques include software-based self-test (SBST), i.e., a piece of software (referred to as test program) which is uploaded in the system available memory and executed, with the purpose of exciting a specific part of the system and observing the effects of possible defects affecting it. SBST has been widely-studies by the research community for years, but its adoption by the industry is quite recent. My research activities have been mainly focused on the industrial perspective of SBST. The problem of providing an effective development flow and guidelines for integrating SBST in the available operating systems have been tackled and results have been provided on microprocessor based systems for the automotive domain. Remarkably, new algorithms have been also introduced with respect to state-of-the-art approaches, which can be systematically implemented to enrich SBST suites of test programs for modern microprocessor based systems. The proposed development flow and algorithms are being currently employed in real electronic control units for automotive products. Moreover, a special hardware infrastructure purposely embedded in modern devices for interconnecting the numerous on-board instruments has been interest of my research as well. This solution is known as reconfigurable scan networks (RSNs) and its practical adoption is growing fast as new standards have been created. Test and diagnosis methodologies have been proposed targeting specific RSN features, aimed at checking whether the reconfigurability of such networks has not been corrupted by defects and, in this case, at identifying the defective elements of the network. The contribution of my work in this field has also been included in the first suite of public-domain benchmark networks

    Non-Redundant Graph Neural Networks with Improved Expressiveness

    Full text link
    Message passing graph neural networks iteratively compute node embeddings by aggregating messages from all neighbors. This procedure can be viewed as a neural variant of the Weisfeiler-Leman method, which limits their expressive power. Moreover, oversmoothing and oversquashing restrict the number of layers these networks can effectively utilize. The repeated exchange and encoding of identical information in message passing amplifies oversquashing. We propose a novel aggregation scheme based on neighborhood trees, which allows for controlling the redundancy by pruning branches of the unfolding trees underlying standard message passing. We prove that reducing redundancy improves expressivity and experimentally show that it alleviates oversquashing. We investigate the interaction between redundancy in message passing and redundancy in computation and propose a compact representation of neighborhood trees, from which we compute node and graph embeddings via a neural tree canonization technique. Our method is provably more expressive than the Weisfeiler-Leman method, less susceptible to oversquashing than message passing neural networks, and provides high classification accuracy on widely-used benchmark datasets

    Statistical Physics of Design

    Full text link
    Modern life increasingly relies on complex products that perform a variety of functions. The key difficulty of creating such products lies not in the manufacturing process, but in the design process. However, design problems are typically driven by multiple contradictory objectives and different stakeholders, have no obvious stopping criteria, and frequently prevent construction of prototypes or experiments. Such ill-defined, or "wicked" problems cannot be "solved" in the traditional sense with optimization methods. Instead, modern design techniques are focused on generating knowledge about the alternative solutions in the design space. In order to facilitate such knowledge generation, in this dissertation I develop the "Systems Physics" framework that treats the emergent structures within the design space as physical objects that interact via quantifiable forces. Mathematically, Systems Physics is based on maximal entropy statistical mechanics, which allows both drawing conceptual analogies between design problems and collective phenomena and performing numerical calculations to gain quantitative understanding. Systems Physics operates via a Model-Compute-Learn loop, with each step refining our thinking of design problems. I demonstrate the capabilities of Systems Physics in two very distinct case studies: Naval Engineering and self-assembly. For the Naval Engineering case, I focus on an established problem of arranging shipboard systems within the available hull space. I demonstrate the essential trade-off between minimizing the routing cost and maximizing the design flexibility, which can lead to abrupt phase transitions. I show how the design space can break into several locally optimal architecture classes that have very different robustness to external couplings. I illustrate how the topology of the shipboard functional network enters a tight interplay with the spatial constraints on placement. For the self-assembly problem, I show that the topology of self-assembled structures can be reliably encoded in the properties of the building blocks so that the structure and the blocks can be jointly designed. The work presented here provides both conceptual and quantitative advancements. In order to properly port the language and the formalism of statistical mechanics to the design domain, I critically re-examine such foundational ideas as system-bath coupling, coarse graining, particle distinguishability, and direct and emergent interactions. I show that the design space can be packed into a special information structure, a tensor network, which allows seamless transition from graphical visualization to sophisticated numerical calculations. This dissertation provides the first quantitative treatment of the design problem that is not reduced to the narrow goals of mathematical optimization. Using statistical mechanics perspective allows me to move beyond the dichotomy of "forward" and "inverse" design and frame design as a knowledge generation process instead. Such framing opens the way to further studies of the design space structures and the time- and path-dependent phenomena in design. The present work also benefits from, and contributes to the philosophical interpretations of statistical mechanics developed by the soft matter community in the past 20 years. The discussion goes far beyond physics and engages with literature from materials science, naval engineering, optimization problems, design theory, network theory, and economic complexity.PHDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163133/1/aklishin_1.pd
    • …
    corecore