14,308 research outputs found

    Fast counting with tensor networks

    Full text link
    We introduce tensor network contraction algorithms for counting satisfying assignments of constraint satisfaction problems (#CSPs). We represent each arbitrary #CSP formula as a tensor network, whose full contraction yields the number of satisfying assignments of that formula, and use graph theoretical methods to determine favorable orders of contraction. We employ our heuristics for the solution of #P-hard counting boolean satisfiability (#SAT) problems, namely monotone #1-in-3SAT and #Cubic-Vertex-Cover, and find that they outperform state-of-the-art solvers by a significant margin.Comment: v2: added results for monotone #1-in-3SAT; published versio

    Adaptive Partitioning for Large-Scale Dynamic Graphs

    Get PDF
    Abstract—In the last years, large-scale graph processing has gained increasing attention, with most recent systems placing particular emphasis on latency. One possible technique to improve runtime performance in a distributed graph processing system is to reduce network communication. The most notable way to achieve this goal is to partition the graph by minimizing the num-ber of edges that connect vertices assigned to different machines, while keeping the load balanced. However, real-world graphs are highly dynamic, with vertices and edges being constantly added and removed. Carefully updating the partitioning of the graph to reflect these changes is necessary to avoid the introduction of an extensive number of cut edges, which would gradually worsen computation performance. In this paper we show that performance degradation in dynamic graph processing systems can be avoided by adapting continuously the graph partitions as the graph changes. We present a novel highly scalable adaptive partitioning strategy, and show a number of refinements that make it work under the constraints of a large-scale distributed system. The partitioning strategy is based on iterative vertex migrations, relying only on local information. We have implemented the technique in a graph processing system, and we show through three real-world scenarios how adapting graph partitioning reduces execution time by over 50 % when compared to commonly used hash-partitioning. I

    Fast Shortest Path Distance Estimation in Large Networks

    Full text link
    We study the problem of preprocessing a large graph so that point-to-point shortest-path queries can be answered very fast. Computing shortest paths is a well studied problem, but exact algorithms do not scale to huge graphs encountered on the web, social networks, and other applications. In this paper we focus on approximate methods for distance estimation, in particular using landmark-based distance indexing. This approach involves selecting a subset of nodes as landmarks and computing (offline) the distances from each node in the graph to those landmarks. At runtime, when the distance between a pair of nodes is needed, we can estimate it quickly by combining the precomputed distances of the two nodes to the landmarks. We prove that selecting the optimal set of landmarks is an NP-hard problem, and thus heuristic solutions need to be employed. Given a budget of memory for the index, which translates directly into a budget of landmarks, different landmark selection strategies can yield dramatically different results in terms of accuracy. A number of simple methods that scale well to large graphs are therefore developed and experimentally compared. The simplest methods choose central nodes of the graph, while the more elaborate ones select central nodes that are also far away from one another. The efficiency of the suggested techniques is tested experimentally using five different real world graphs with millions of edges; for a given accuracy, they require as much as 250 times less space than the current approach in the literature which considers selecting landmarks at random. Finally, we study applications of our method in two problems arising naturally in large-scale networks, namely, social search and community detection.Yahoo! Research (internship

    On Characterizing the Data Movement Complexity of Computational DAGs for Parallel Execution

    Get PDF
    Technology trends are making the cost of data movement increasingly dominant, both in terms of energy and time, over the cost of performing arithmetic operations in computer systems. The fundamental ratio of aggregate data movement bandwidth to the total computational power (also referred to the machine balance parameter) in parallel computer systems is decreasing. It is there- fore of considerable importance to characterize the inherent data movement requirements of parallel algorithms, so that the minimal architectural balance parameters required to support it on future systems can be well understood. In this paper, we develop an extension of the well-known red-blue pebble game to develop lower bounds on the data movement complexity for the parallel execution of computational directed acyclic graphs (CDAGs) on parallel systems. We model multi-node multi-core parallel systems, with the total physical memory distributed across the nodes (that are connected through some interconnection network) and in a multi-level shared cache hierarchy for processors within a node. We also develop new techniques for lower bound characterization of non-homogeneous CDAGs. We demonstrate the use of the methodology by analyzing the CDAGs of several numerical algorithms, to develop lower bounds on data movement for their parallel execution
    • …
    corecore