2,174 research outputs found

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform

    Aerospace Medicine and Biology: A continuing bibliography (supplement 221)

    Get PDF
    This bibliography lists 127 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1981

    Classic and Modern Meridian Studies: A Review of Low Hydraulic Resistance Channels along Meridians and Their Relevance for Therapeutic Effects in Traditional Chinese Medicine

    Get PDF
    Meridian theory is one of the core components of the theory of traditional Chinese medicine (TCM). It gives an integral explanation for how human life works, how a disease forms, and how a therapy acts to treat a disease. If we do not understand the meridians, it is hard to understand the TCM. People in China and abroad had been working hard for 50 years, trying to understand the meridians; then 15 years ago a breakthrough idea appeared when we realized that they are low resistance fluid channels where various chemical and physical transports take place. The channel is called low hydraulic resistance channel (LHRC) and the chemical transport is named volume transmission (VT). This review aims to give a full understanding of the essence of meridian and its works on the therapies of TCM

    Development of Computer Modelling Techniques for Microwave Thermography

    Get PDF
    Microwave thermography obtains information about the temperature of internal body tissues by a spectral measurement of the intensity of the natural thermally generated radiation emitted by the body tissues. At the lower microwave frequencies radiation can penetrate through tissue for distances useful for a range of medical applications. Radiation from inside the body may be detected and measured non-invasively at the skin surface by a microwave thermography system consisting of a suitable antenna to detect the radiation and a radiometer receiver to measure its intensity. In the microwave region the radiative power emitted per unit bandwidth is proportional to the temperature of the emitting tissue and the total radiative power received from the body tissues, P, is a weighted volume average of temperature P = kB ∫w(r) T(r) dV where k is Boltzmann's constant, B is the bandwidth, T(r) is the temperature at the position r and w(r) is the weighting function. The weighting function depends on the structure and dielectric properties of the tissues being viewed, the measurement frequency and the characteristics of the antenna. The Glasgow developed microwave thermography system operates at a central frequency of 3.2 GHz, chosen to give the optimum compromise between the depth from which radiation may be received, which decreases with increasing frequency, and the lateral spatial resolution which increases with increasing frequency. A Dicke configuration radiometer receiver and a cylindrical low-impedance waveguide antenna, which operates in contact with the skin surface, are used. The output from the radiometer is calibrated to degrees Celsius to give a "microwave temperature" of the tissues being viewed. The tissue temperature distribution, T(r), reflects the vascular and metabolic state of the tissue. Diseases which affect these physiological functions will result in changes in the tissue temperature and hence in the measured microwave temperature. It is not possible, however, to solve the indirect problem of retrieval of the temperature distribution in the tissue from a single frequency measurement of microwave temperature. It is therefore necessary to model the temperature distribution in the tissue and, from this, solve the direct problem of calculation of the microwave temperature. Measured microwave temperatures may then be compared with those modelled to indicate the physiological state of the tissue. Pennes (1948) The temperature distribution in the tissue may be determined by solution of the steady-state heat transfer equation KV2T +Wbcb(Ta -T) + Q = 0 where K is the thermal conductivity of the tissue, Wb is the perfusion rate of blood through the tissue, cb is the specific heat capacity of the blood, Ta is the arterial blood temperature and Q is the rate of metabolic heat generation in the tissue. The boundary condition of heat loss at the skin surface is governed by the equation K dT/dn= h(T-Te ) where Te is the ambient temperature and h is the heat transfer coefficient due to the combined effects of heat loss by radiation, convection and evaporation. The microwave temperature may be calculated from the modelled temperature distribution and use of plane wave theory to determine the weighting function, with an increased power attenuation constant to account for the response of the antenna. The modelling of the tissue is simplified by the fact that both the tissue thermal conductivity and the microwave dielectric properties of the tissue depend primarily on the water content of the tissue. This thermal and electromagnetic modelling has been carried out to determine the expected microwave temperature profiles across the female breast. Microwave and infra-red temperature measurements were made on a group of young, normal women and a group of older, post-menopausal women with breast disease. In general the younger women will have higher water content breast tissue than that of the older women due to the higher proportion of glandular and connective tissue and the smaller proportion of low water content fat tissue

    Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain

    Get PDF
    open12noOsteoarthritis (OA) is the most common form of joint disease and a major cause of pain and disability in the adult population. Interestingly, there are patients with symptomatic OA displaying pain, while patients with asymptomatic OA that do not experience pain but show radiographic signs of joint damage. Pain is a complex experience integrating sensory, affective, and cognitive processes related to several peripheral and central nociceptive factors besides inflammation. During the last years, the role of infrapatellar fat pad (IFP), other than the synovial membrane, has been investigated as a potential source of pain in OA. Interestingly, new findings suggest that IFP and synovial membrane might act as a functional unit in OA pathogenesis and pain. The present review discuss the role of IFP and synovial membrane in the development of OA, with a particular focus on pain onset and the possible involved mediators that may play a role in OA pathology and pain mechanisms. Inflammation of IFP and synovial membrane may drive peripheral and central sensitization in KOA. Since sensitization is associated with pain severity in knee OA and may potentially contribute to the transition from acute to chronic, persistent pain in knee OA, preventing sensitization would be a potentially effective and novel means of preventing worsening of pain in knee OA.openBelluzzi, Elisa; Stocco, Elena; Pozzuoli, Assunta; Granzotto, Marnie; Porzionato, Andrea; Vettor, Roberto; De Caro, Raffaele; Ruggieri, Pietro; Ramonda, Roberta; Rossato, Marco; Favero, Marta; Macchi, VeronicaBelluzzi, Elisa; Stocco, Elena; Pozzuoli, Assunta; Granzotto, Marnie; Porzionato, Andrea; Vettor, Roberto; De Caro, Raffaele; Ruggieri, Pietro; Ramonda, Roberta; Rossato, Marco; Favero, Marta; Macchi, Veronic

    Introducing monitoring and automation in cartilage tissue engineering, toward controlled clinical translation

    Get PDF
    The clinical application of tissue engineered products requires to be tightly connected with the possibility to control the process, assess graft quality and define suitable release criteria for implantation. The aim of this work is to establish techniques to standardize and control the in vitro engineering of cartilage grafts. The work is organized in three sub-projects: first a method to predict cell proliferation capacity was studied, then an in line technique to monitor the draft during in vitro culture was developed and, finally, a culture system for the reproducible production of engineered cartilage was designed and validated. Real-time measurements of human chondrocyte heat production during in vitro proliferation. Isothermal microcalorimetry (IMC) is an on-line, non-destructive and high resolution technique. In this project we aimed to verify the possibility to apply IMC to monitor the metabolic activity of primary human articular chondrocytes (HAC) during their in vitro proliferation. Indeed, currently, many clinically available cell therapy products for the repair of cartilage lesions involve a process of in vitro cell expansion. Establishing a model system able to predict the efficiency of this lengthy, labor-intensive, and challenging to standardize step could have a great potential impact on the manufacturing process. In this study an optimized experimental set up was first established, to reproducible acquire heat flow data; then it was demonstrated that the HAC proliferation within the IMC-based model was similar to proliferation under standard culture conditions, verifying its relevance for simulating the typical cell culture application. Finally, based on the results from 12 independent donors, the possible predictive potential of this technique was assessed. Online monitoring of oxygen as a non-destructive method to quantify cells in engineered 3D tissue constructs. This project aimed at assessing a technique to monitor graft quality during production and/or at release. A quantitative method to monitor the cells number in a 3D construct, based on the on-line measurement of the oxygen consumption in a perfusion based bioreactor system was developed. Oxygen levels dissolved in the medium were monitored on line, by two chemo-optic flow-through micro-oxygen sensors connected at the inlet and the outlet of the bioreactor scaffold chamber. A destructive DNA assay served to quantify the number of cells at the end of the culture. Thus the oxygen consumption per cell could be calculated as the oxygen drop across the perfused constructs at the end of the culture period and the number of cells quantified by DNA. The method developed would allow to non-invasively monitoring in real time the number of chondrocytes on the scaffold. Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. The aim of this project was to upscale the size of engineered human cartilage grafts. The main aim of this project consisted in the design and prototyping of a direct perfusion bioreactor system, based on fluidodynamic models (realized in collaboration with the Institute for Bioengineering of Catalonia, Spain), able to guarantee homogeneous seeding and culture conditions trough the entire scaffold surface. The system was then validated and the capability to reproducibly support the process of tissue development was tested by histological, biochemical and biomechanical assays. Within the same project the automation of the designed scaled up bioreactor system, thought as a stand alone system, was proposed. A prototype was realized in collaboration with Applikon Biotechnology BV, The Netherlands. The developed system allows to achieve within a closed environment both cell seeding and culture, controlling some important environmental parameters (e.g. temperature, CO2 and O2 tension), coordinating the medium flow and tracking culture development. The system represents a relevant step toward process automation in tissue engineering and, as previously discussed, enhancing the automation level is an important requirement in order to move towards standardized protocols of graft generation for the clinical practice. These techniques will be critical towards a controlled and standardized procedure for clinical implementation of tissue engineering products and will provide the basis for controlled in vitro studies on cartilage development. Indeed the resulting methods have already been integrated in a streamlined, controlled, bioreactor based protocol for the in vitro production of up scaled engineered cartilage drafts. Moreover the techniques described will serve as the foundation for a recently approved Collaborative Project funded by the European Union, having the goal to produce cartilage tissue grafts. In order to reach this goal the research based technologies and processes described in this dissertation will be adapted for GMP compliance and conformance to regulatory guidelines for the production of engineered tissues for clinical use, which will be tested in a clinical trial

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 352)

    Get PDF
    This bibliography lists 147 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during July 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions

    Get PDF
    Percutaneous thermal ablation has proved to be an effective modality for treating both benign and malignant tumors in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50 oC, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumor destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of- the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non- invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow
    corecore