1,267,057 research outputs found
Treewidth: Computational Experiments.
Many NP-complete graph problems can be solved in polynomial time for graphs with bounded treewidth. Equivalent results are known for pathwidth and branchwidth. In recent years, several studies have shown that this result is not only of theoretical interest but can successfully be applied to find (almost) optimal solutions or lower bounds for diverse optimization problems. To apply a tree decomposition approach, the treewidth of the graph has to be determined, independently of the application at hand. Although for fixed k, linear time algorithms exist to solve the decision problem ``treewidth at most k, their practical use is very limited. The computational tractability of treewidth has been rarely studied so far. In this paper, we compare four heuristics and two lower bounds for instances from applications such as the frequency assignment problem and the vertex coloring problem. Three of the heuristics are based on well-known algorithms to recognize triangulated graphs. The fourth heuristic recursively improves a tree decomposition by the computation of minimal separating vertex sets in subgraphs. Lower bounds can be computed from maximal cliques and the minimum degree of induced subgraphs. A computational analysis shows that the treewidth of several graphs can be identified by these methods. For other graphs, however, more sophisticated techniques are necessary.operations research and management science;
Computational Experiments with Cross and Crooked Cross Cuts
In this paper, we study whether cuts obtained from two simplex tableau rows at a time can strengthen the bounds obtained by Gomory mixed-integer (GMI) cuts based on single tableau rows. We also study whether cross and crooked cross cuts, which generalize split cuts, can be separated in an effective manner for practical mixed-integer programs (MIPs) and can yield a nontrivial improvement over the bounds obtained by split cuts. We give positive answers to both these questions for MIPLIB 3.0 problems. Cross cuts are a special case of the t-branch split cuts studied by Li and Richard [Li Y, Richard J-PP (2008) Cook, Kannan and Schrijvers's example revisited. Discrete Optim. 5:724–734]. Split cuts are 1-branch split cuts, and cross cuts are 2-branch split cuts. Crooked cross cuts were introduced by Dash, Günlük, and Lodi [Dash S, Günlük O, Lodi A (2010) MIR closures of polyhedral sets. Math Programming 121:33–60] and were shown to dominate cross cuts by Dash, Günlük, and Molinaro [Dash S, Günlük O, Molinaro M (2012b) On the relative strength of different generalizations of split cuts. IBM Technical Report RC25326, IBM, Yorktown Heights, NY].United States. Office of Naval Research (Grant N000141110724
Desingularization in Computational Applications and Experiments
After briefly recalling some computational aspects of blowing up and of
representation of resolution data common to a wide range of desingularization
algorithms (in the general case as well as in special cases like surfaces or
binomial varieties), we shall proceed to computational applications of
resolution of singularities in singularity theory and algebraic geometry, also
touching on relations to algebraic statistics and machine learning. Namely, we
explain how to compute the intersection form and dual graph of resolution for
surfaces, how to determine discrepancies, the log-canoncial threshold and the
topological Zeta-function on the basis of desingularization data. We shall also
briefly see how resolution data comes into play for Bernstein-Sato polynomials,
and we mention some settings in which desingularization algorithms can be used
for computational experiments. The latter is simply an invitation to the
readers to think themselves about experiments using existing software, whenever
it seems suitable for their own work.Comment: notes of a summer school talk; 16 pages; 1 figur
Learning Parallel Computations with ParaLab
In this paper, we present the ParaLab teachware system, which can be used for learning the parallel computation methods. ParaLab provides the tools for simulating the multiprocessor computational systems with various network topologies, for carrying out the computational experiments in the simulation mode, and for evaluating the efficiency of the parallel computation methods. The visual presentation of the parallel computations taking place in the computational experiments is the key feature of the system. ParaLab can be used for the laboratory training within various teaching courses in the field of parallel, distributed, and supercomputer computations
Computational experiments in the optimal slewing of flexible structures
Numerical experiments on the problem of moving a flexible beam are discussed. An optimal control problem is formulated and transcribed into a form which can be solved using semi-infinite optimization techniques. All experiments were carried out on a SUN 3 microcomputer
- …
