
Submitted to INFORMS Journal on Computing
manuscript (Please, provide the mansucript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Computational Experiments with Cross and Crooked
Cross Cuts

Sanjeeb Dash, Oktay Günlük
IBM Research, sanjeebd@us.ibm.com, gunluk@us.ibm.com

Juan Pablo Vielma
Massachusetts Institute of Technology, jvielma@mit.edu

In this paper, we study whether cuts obtained from two simplex tableau rows at a time can strengthen the

bounds obtained by GMI cuts based on single tableau rows. We also study whether cross and crooked cross

cuts, which generalize split cuts, can be separated in an effective manner for practical MIPs and can yield

a non-trivial improvement over the bounds obtained by split cuts. We give positive answers to both these

questions for MIPLIB 3.0 problems. Cross cuts are a special case of the t-branch split cuts studied by Li and

Richard (2008). Split cuts are 1-branch split cuts, and cross cuts are 2-branch split cuts. Crooked cross cuts

were introduced by Dash, Dey and Günlük (2010) and were shown to dominate cross cuts in Dash, Günlük

and Molinaro (2012).

Key words : mixed integer programming; cutting planes; elementary closures

History :

1. Introduction

The Gomory mixed-integer (GMI) cut and its variants are currently the most important

cutting planes for solving general mixed-integer programs (MIPs), and are incorporated in

most commercial MIP solvers (Balas et al. 1996, Bixby et al. 2000). The GMI cut can be

derived, via an algebraic approach, as a mixed-integer rounding (MIR) inequality from a

single row relaxation of an MIP; in practice, it is usually derived from a simplex tableau

row associated with an MIP. Alternatively, it can be derived, via a geometric approach, as

a disjunctive cut and more specifically as a split cut. Recently, Balas and Saxena (2008)

and Dash et al. (2010) approximately optimized over the split closure of practical MIP

instances and obtained very strong bounds on the optimal values of such instances. There

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/78064432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
2 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

has been much recent work on generalizing GMI cuts in different ways to obtain more

effective cutting planes. An important goal of this recent work is to obtain cuts that

significantly improve the bounds yielded by GMI cuts.

A well-studied generalization of the GMI cut involves the use of lattice-free sets to

generate cutting planes (lattice-free cuts) from multiple rows of a simplex tableau associated

with an MIP. Following the work of Andersen et al. (2007), who study lattice-free cuts

from relaxations of an MIP with two rows, there have been many theoretical studies of

extensions with two or more rows (Borozan and Cornuéjols 2009) and with additional

structure (Dey and Wolsey 2010b, Basu et al. 2010, Dey and Wolsey 2010a, Fukasawa and

Günlük 2011, Conforti et al. 2011b). See Dey and Tramontani (2009) and Conforti et al.

(2011a) for recent surveys on this topic. Computational work on this topic is reported

first by Espinoza (2010), and subsequently by Louveaux and Poirrier (2012), Dey et al.

(2010), and Basu et al. (2011). However, these efforts have not resulted in computationally

effective cutting planes for solving practical MIPs.

A different generalization of the GMI involves using disjunctions that combine two or

more split disjunctions instead of a single split disjunction. One such generalization is the

t-branch split cut (for integers t ≥ 2) introduced by Li and Richard (2008). Yet another

generalization is the crooked cross cut, introduced by Dash et al. (2012a, 2011). The crooked

cross cut dominates the 2-branch split cut (also called the cross cut in Dash et al. (2012a)).

In earlier computational work on cuts from multiple tableau rows, Espinoza (2010)

generated lattice-free cuts by considering up to 10 tableau rows simultaneously. However,

his work does not measure the relative strength of GMI cuts versus multi-row cuts in

the elementary closure sense as in later rounds of his algorithm, cuts are generated using

earlier cuts. Louveaux and Poirrier (2012) give a fast algorithm to separate all lattice-free

cuts from two-row relaxations arising from pairs of tableau rows. They consider a subset

of all such pairs and generate lattice-free cuts, augment the LP relaxation with these cuts

and derive a new tableau (up to five times), but they do not lift the cuts with respect to

the non-basic integral variables. Recently, Dey et al. (2010) also experimented with cuts

obtained from pairs of tableau rows. Their approach involves first relaxing the integrality

of non-basic integral variables and then finding violated 2 dimensional lattice-free cuts

and finally lifting the cut coefficients to re-introduce integrality information. These lifted

lattice-free cuts are known to be crooked cross cuts (Dash et al. 2012a) but the converse is

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 3

not true (Dash et al. 2012b). Their computational experiments are performed on randomly

generated problems, where they get a nontrivial improvement over one round of GMI cuts,

but their procedure has limited success on practical MIPs. Basu et al. (2011) also separate

triangle cuts of type 2 but conclude that their “family of two-row cuts is not competitive

with GMI cuts in terms of gap closed” for MIPLIB problems. Their approach is essentially

the same as that of Dey et al. (2010) and has some inherent difficulties. Firstly, it is

not always clear what the best way to lift a given lattice-free cut is. Secondly, it is hard

to decide which lattice-free cut for the two-row continuous group relaxation would yield

a good cut after lifting. Therefore, although Louveaux and Poirrier (2012) can separate

lattice free cuts from such a relaxation quickly, it is still not clear if this relaxation is the

best model for obtaining cuts from pairs of tableau rows.

In this paper, we first investigate the strength of split, cross and crooked cross cuts

that are obtained using two row relaxations of MIPs. To obtain the relaxations, we take

pairs of rows of the optimal tableau associated with the LP relaxation of an MIP together

with the integrality and bound information on the variables. This approach is different

from the lattice-free cut based approaches in Basu et al. (2011) and Dey et al. (2010) as

we use the bound and integrality information on the variables directly. As in Basu et al.

(2011) and Dey et al. (2010), we find violated cuts heuristically. We obtain, for the first

time, bounds for the MIPLIB 3.0 problems (Bixby et al. 1998) that nontrivially exceed the

bounds obtained by only adding GMI cuts based on these tableau rows, with the biggest

fraction of the improvement coming from split cuts. In our second set of computational

experiments, we investigate the strength of split, cross and crooked cross cuts using the

original formulation of an MIP instead of its two row relaxations. Our computational

results show that bounds obtained in Balas and Saxena (2008) and Dash et al. (2010)

using split cuts only can be exceeded by using cross and crooked cross cuts. For a number

of MIPLIB 3.0 problems, we are able to obtain noticeably better bounds on the optimal

objective function value by generating cross cuts.

The remainder of the paper is structured as follows. In Section 2, we define the different

classes of cuts used in this paper, and in Section 3, we discuss separation models for these

cut classes. In Section 4, we describe the main heuristics we use to separate cuts from these

classes. In Section 5, we use the heuristics described in the previous sections to obtain cross

cuts from pairs of tableau rows and show that these cuts yield significantly better bounds

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
4 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

than the GMI cuts derived from the same tableau rows. In Section 6, we explain how we

find violated cross cuts and crooked cross cuts (from all constraints). We compare bounds

on the integer optimum value obtained in this manner with bounds obtained earlier by

approximately optimizing over the split closure.

2. Preliminaries

Consider the following mixed-integer set with m rows

P = {(x, y)∈Zn1 ×Rn2 : Ax+Gy= b, x≥ 0, y≥ 0}

where A,G, b are rational matrices with m rows and n1, n2,1 columns, respectively. In

general, the set of feasible solutions for any mixed-integer linear program can be framed in

this way. We denote the linear programming (LP) relaxation of P by PLP . In the remainder

of the paper π and a (along with subscripts or superscripts) represent row vectors with n1

components, and c is a row vector with n2 components. We next discuss disjunctive cuts

for P (see Balas (1979)).

Let D = ∪k∈KDk where Dk = {(x, y) ∈ Zn1 ×Rn2 : Akx+Gky ≤ bk} for k ∈K. If Zn1 ×

Rn2 ⊆D, then we call D a disjunction and we call each Dk an atom of the disjunction D.

A linear inequality is called a disjunctive cut for P obtained from the disjunction D if it

is valid for PLP ∩Dk for all k ∈K. All disjunctive cuts for P are valid for P . Note that

multiple disjunctive cuts can be derived from the same disjunction. In this paper we are

interested in the following types of disjunctions.

2.1. Split disjunctions

For a fixed π ∈ Zn1 \ {0}, and γ ∈ Z, a split disjunction is denoted by S(π,γ) and defined

as

S(π,γ) = S1(π,γ)∪S2(π,γ),

where S1(π,γ) = {(x, y) ∈ Rn1+n2 : πx≤ γ} and S2(π,γ) = {(x, y) ∈ Rn1+n2 : πx≥ γ + 1}.

A linear inequality is said to be a split cut (Cook et al. 1990) for P if it is valid for

PLP ∩S1(π,γ) and PLP ∩S2(π,γ). We define PS(π,γ) as the convex hull of PLP ∩S(π,γ),

and PS to be the set of points in PLP which satisfy all split cuts for P , i.e., the split closure

of P . Therefore

PS =
⋂

π∈Zn1

⋂
γ∈Z

PS(π,γ). (1)

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 5

Assume that the following equation is satisfied by all points in P (for example, it could

be obtained via a linear combination of the constraints Ax+Gy= b):

n1∑
i=1

aixi +

n2∑
i=1

ciyi = β. (2)

Let β̂ = β − bβc and assume that β̂ 6= 0. The mixed-integer rounding (MIR) cut derived

from (2) is
n1∑
i=1

(β̂baic+ min(âi, β̂))xi +

n2∑
i=1

max(ci,0)yi ≥ β̂dβe, (3)

where âi = ai−baic. It is well known that the MIR cut (3) is a split cut for the following

1-row relaxation of P ,

P1 = {(x, y)∈Zn1 ×Rn2 :

n1∑
i=1

aixi +

n2∑
i=1

ciyi = β, x≥ 0, y≥ 0},

using the disjunction S(π,γ) where

γ = bβc and πi =

 baic if âi ≤ β̂,

daie if âi > β̂.
(4)

Conversely, any split cut for P is an MIR cut derived from a single implied equation (2)

for P along with nonnegativity constraints on the variables. When the MIR cut is derived

from a row of the simplex tableau associated with the LP relaxation of the mixed-integer

program, we call it the Gomory mixed-integer (GMI) cut.

2.2. Cross disjunctions and cross cuts

The cross disjunction (see Dash et al. (2012a)) associated to π1, π2 ∈Zn1 \{0}, and γ1, γ2 ∈

Z, is given by

C(π1, π2, γ1, γ2) =
⋃

k∈{1,2,3,4}

Ck(π1, π2, γ1, γ2)

where:

C1(π1, π2, γ1, γ2) = {(x, y)∈Rn1+n2 : π1x≤ γ1, π2x≤ γ2},

C2(π1, π2, γ1, γ2) = {(x, y)∈Rn1+n2 : π1x≤ γ1, π2x≥ γ2 + 1},

C3(π1, π2, γ1, γ2) = {(x, y)∈Rn1+n2 : π1x≥ γ1 + 1, π2x≤ γ2}, and

C4(π1, π2, γ1, γ2) = {(x, y)∈Rn1+n2 : π1x≥ γ1 + 1, π2x≥ γ2 + 1}.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
6 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Cross disjunctions were first defined and studied by Li and Richard (2008) who call them

2-branch split disjunctions. A linear inequality valid for PLP ∩ Ck(π1, π2, γ1, γ2) for k =

1, . . . ,4, is called a cross cut for P obtained from the disjunction C(π1, π2, γ1, γ2). As P ⊆
Zn1 ×Rn2 ⊆C(π1, π2, γ1, γ2), cross cuts are valid for all points in P .

We define PC(π1, π2, γ1, γ2) as the convex hull of PLP ∩C(π1, π2, γ1, γ2). The cross closure

of P , denoted by PC , is the set of points in PLP that satisfy all cross cuts obtained from

all possible disjunctions for P . Clearly,

PC =
⋂

π1,π2∈Zn1

⋂
γ1,γ2∈Z

PC(π1, π2, γ1, γ2).

2.3. Crooked cross disjunctions and crooked cross cuts

Similar to cross disjunctions, the crooked cross disjunction (see Dash et al. (2012a)) asso-

ciated to π1, π2 ∈Zn1 \ {0}, and γ1, γ2 ∈Z is given by

D(π1, π2, γ1, γ2) =
⋃

k∈{1,2,3,4}

Dk(π1, π2, γ1, γ2)

where:

D1(π1, π2, γ1, γ2) = {(x, y)∈Rn1+n2 : π1x≤ γ1, (π2−π1)x≤ γ2− γ1},

D2(π1, π2, γ1, γ2) = {(x, y)∈Rn1+n2 : π1x≤ γ1, (π2−π1)x≥ γ2− γ1 + 1},

D3(π1, π2, γ1, γ2) = {(x, y)∈Rn1+n2 : π1x≥ γ1 + 1, π2x≤ γ2}, and

D4(π1, π2, γ1, γ2) = {(x, y)∈Rn1+n2 : π1x≥ γ1 + 1, π2x≥ γ2 + 1}.

Notice that D3 and D4 above are same as C3 and C4 described in Section 2.2 whereas D1

and D2 are different from C1 and C2. A linear inequality valid for PLP ∩Dk(π1, π2, γ1, γ2)

for k = 1, . . . ,4, is called a crooked cross (CC) cut for P obtained from the disjunction

D(π1, π2, γ1, γ2). Clearly CC cuts are valid for all points in P .

We define PCC(π1, π2, γ1, γ2) to be the convex hull of PLP ∩D(π1, π2, γ1, γ2), and denote

the CC closure of P by PCC where

PCC =
⋂

π1,π2∈Zn1

⋂
γ1,γ2∈Z

PCC(π1, π2, γ1, γ2).

It is easy to see that the CC closure and cross closure of P are contained in its split

closure. Further, it is shown in Dash et al. (2011) that PCC ⊆ PC , but the containment is

not strict (Dash et al. 2012b).

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 7

2.4. Breaking symmetry

We next discuss how to represent the disjunctions discussed above uniquely and how to

identify “useless” disjunctions. First note that given π1, π2 ∈ Zn1 and γ1, γ2 ∈ Z, such that

S(π1, γ1) ⊂ S(π2, γ2), any split cut generated from S(π2, γ2) can also be generated from

S(π1, γ1). This basic idea easily extends to more general disjunctions. We say that a split

(or cross, or crooked cross) disjunction “dominates” a second split (or cross, or crooked

cross) disjunction if the first one is strictly contained in the second.

A split disjunction S(π,γ) is dominated by another split disjunction unless components

of π are coprime. In other words, S(π,γ) is dominated if there exists an integer k > 1 such

that π/k ∈ Zn1; in this case S(π/k, bγ/kc) is strictly contained in S(π,γ). Conversely, as

S(π,γ) is dominated by S(π′, γ′) only when the hyperplanes defined by π and π′ are parallel

to each other, it is easy to show that S(π,γ) is not contained in another split disjunction

if the components of π are coprime. Consequently, it suffices to only consider π that have

coprime elements in (1).

It follows that for π 6= π′, S(π,γ) = S(π′, γ′) if and only π′ =−π and γ′ =−γ− 1. Notice

that exactly one of γ and −γ − 1 is nonnegative and the other one is strictly negative.

Consequently, in the definition of the split closure in (1), one can assume γ ∈ Z+. We

therefore have the following observation.

Observation 1. A split disjunction S(π,γ) is uniquely defined by its parameters if

γ ≥ 0. Furthermore, it is not dominated by another split disjunction if and only if elements

of π are coprime.

It is relatively straight forward to extend this observation to cross disjunctions as follows

after noticing the fact that C(π1, π2, γ1, γ2) =C(π2, π1, γ2, γ1).

Observation 2. A cross disjunction C(π1, π2, γ1, γ2) is uniquely defined by its parame-

ters if γ1, γ2 ≥ 0 and [π1, γ1] is greater than [π2, γ2] in the lexicographical sense. Furthermore,

it is not dominated by another cross disjunction if elements of [π1, π2] are coprime.

When the elements of the vector [π1, π2] ∈ Z2n1 are divisible by a common

integer k > 1, then it is easy to show that D(π1, π2, γ1, γ2) is dominated by

D((1/k)π1, (1/k)π2, bγ1/kc, bγ2/kc). However, due to the asymmetry in the description

of crooked cross disjunctions, D(π1, π2, γ1, γ2) = D(π′1, π
′
2, γ
′
1, γ
′
2) only when π1 = π′1, π2 =

π′2, γ1 = γ′1 and γ2 = γ′2 and consequently these disjunctions are uniquely defined by the asso-

ciated parameters. To see this, consider the crooked cross disjunction D([1,0], [0,1],0,0)

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
8 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

for n1 = 2 as shown in Figure 1. Assume that there exists π1, π2 ∈ Z2 and γ1, γ2 ∈ Z such

that D(π1, π2, γ1, γ2) = D([1,0], [0,1],0,0). It is easy to see that either π1 = [1,0], γ1 = 0,

or, π1 = [−1,0], γ1 =−1. Furthermore, if π1 = [1,0] clearly π2 = [0,1] and (π1, π2, γ1, γ2) =

([1,0], [0,1],0,0). On the other hand, when π1 = [−1,0] and γ1 =−1, it is possible to show

that there does not exist π2, γ2 such that D(π1, π2, γ1, γ2) = D([1,0], [0,1],0,0) holds. We

therefore make the following observation.

Observation 3. A crooked cross disjunction D(π1, π2, γ1, γ2) is uniquely defined by its

parameters. Furthermore, it is not dominated by another crooked cross disjunction if the

elements of the extended vector [π1, π2] are coprime.

x2 ≤ 0

x2 ≥ 1

x1 ≥ 1x1 ≤ 0

x1 ≥ 1x1 ≤ 0
x2−x1 ≥ 1

x2−x1 ≤ 0

Figure 1 A crooked cross disjunction defined by π1 = [1,0], γ1 = 0 and π2 = [0,1], γ2 = 0

Given a pair of split disjunctions S(π1, γ1) and S(π2, γ2), we get only one “natural” cross

disjunction by intersecting these two split disjunctions, which is C(π1, π2, γ1, γ2). However,

we can construct eight “natural” crooked cross disjunctions; we get different crooked cross

disjunctions by switching (π1, γ1) and (π2, γ2), and by separately multiplying these vectors

by ±1.

3. Separating cross and crooked cross cuts

Given a mixed integer set P = {(x, y)∈Zn1×Rn2 : Ax+Gy= b, x≥ 0, y≥ 0}, and a point

(x̄, ȳ) ∈ PLP , it is easy to write a linear program to separate (x̄, ȳ) from PC(π1, π2, γ1, γ2)

if π1, π2 ∈ Zn1, and γ1, γ2 ∈ Z are fixed. More precisely, a violated cross cut of the form

ax+ cy≥ d (here a and c are row vectors and d is a number), if it exists, can be obtained

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 9

by solving the following linear program.

Cross Cut Separation LP:

min z = ax̄+ cȳ− d (5a)

subject to

a≥ λ1A−α1π1−β1π2, d≤ λ1b−α1γ1−β1γ2 (5b)

a≥ λ2A−α2π1 +β2π2, d≤ λ2b−α2γ1 +β2(γ2 + 1) (5c)

a≥ λ3A+α3π1−β3π2, d≤ λ3b+α3(γ1 + 1)−β3γ2 (5d)

a≥ λ4A+α4π1 +β4π2, d≤ λ4b+α4(γ1 + 1) +β4(γ2 + 1) (5e)

c≥ λiG ∀i∈ {1,2,3,4} (5f)

βi, αi ≥ 0, ∀i∈ {1,2,3,4} (5g)

λi free, ∀i∈ {1,2,3,4} (5h)

a, c, d free. (5i)

4∑
i=1

(‖λi‖1 +αi +βi)≤ 1. (5j)

Here λ1, . . . , λ4 are row vectors with m components, and αi and βi are real numbers.

As 0 is a feasible solution to the cross cut separation LP, the optimal value z∗ ≤ 0. Note

that if there exists a solution to the separation LP with z < 0, then the cross cut ax+cy≥ d

associated with this solution is violated by (x̄, ȳ) and conversely, if there exists a violated

cross cut, then there is a corresponding solution to the LP with z < 0. This implies that

the optimal value z∗ = 0 if and only if (x̄, ȳ)∈ PC(π1, π2, γ1, γ2).

Observe that the constraints (5b)-(5i) define a cone, and thus the objective function

value of the cross cut separation LP without the normalization constraint (5j) is unbounded

(when a violated cut exists). The normalization constraint makes the problem bounded

while preserving all valid cuts up to scalar multiplication (see Fischetti et al. (2011), Balas

and Bonami (2009)). Many other normalization constraints can be found in the literature,

see Balas and Bonami (2009). We experimented with the three normalizations (a), (b), (c)

mentioned in (Balas and Bonami 2009, p. 185) as well as a variant where we use l∞ norm

instead of l1 or l2 as the weight of row multipliers. We ran our code with each of these

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

normalizations and chose (a), the unweighted version in Balas and Bonami (2009) which

yielded the best average gap closed after one hour.

We now describe the separation algorithm we used in our computational experiments.

The procedure receives as input a mixed integer set P , a list of cross disjunctions C, a

point (x̄, ȳ)∈ PLP to be separated and the maximum number of cuts p to be returned. The

procedure then attempts to separate (x̄, ȳ)∈ PLP for each cross disjunction in C.

Algorithm 1: Cross.LP(C,P, (x̄, ȳ) , p).

Input: List of cross disjunctions C, mixed integer set P , point (x̄, ȳ)∈ PLP and list

size p.

Result: List of cuts L.

1 Set L= ∅.

2 for (π1, γ1, π2, γ2)∈C do

3 Solve the cross cut separation LP for PC(π1, π2, γ1, γ2).

4 if a violated cut is found then add it to the list L. if |L| ≥ p then exit the for loop.

5 end

3.1. Separating split cuts

Split cuts derived from a fixed split disjunction S(π,γ) can be separated in a similar fashion

by solving the split cut separation LP which we define by replacing the constraints (5b)-(5e)

by

a≥ λ1A−α1π, d≤ λ1b−α1γ

a≥ λ2A+α2π, d≤ λ2b+α2(γ+ 1)

and the number 4 by 2 in the constraints (5f)-(5h) and (5j).

The separation algorithm we used in our computational experiments is called

Split.LP(S,P, (x̄, ȳ) , p) and it is very similar to that of cross cuts above. The only differ-

ence is that the input to the algorithm consists of a list of split disjunctions and the split

cut separation LP is solved for each disjunction to find violated cuts.

3.2. Separating crooked cross cuts

For a given fixed crooked cross disjunction D(π1, π2, γ1, γ2), the associated separation prob-

lem can again be formulated as a linear program. The resulting LP is identical to (5a)-(5i)

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 11

except constraints (5b) and (5c), associated with the first two disjunctions are replaced

with

a≥ λ1A−α1π1−β1(π2−π1), d≤ λ1b−α1γ1−β1(γ2− γ1) (6)

a≥ λ2A−α2π1 +β2(π2−π1), d≤ λ2b−α2γ1 +β2(γ2− γ1 + 1). (7)

The resulting LP is called the crooked cross cut separation LP and it produces a violated

cut provided that there is one.

We call the separation routine for crooked cross cuts CCross.LP(C,P, (x̄, ȳ) , p), where

C stands for a list of cross disjunctions. The algorithm is essentially identical to that

Cross.LP except that the crooked cross cut separation LP is solved to identify cuts; as

discussed earlier there are eight distinct crooked cross disjunctions that can be defined

from a cross disjunctions, and each one is tested for a violated cut in CCross.LP.

3.3. A bilinear integer program for separating from the (crooked) cross cut closure

If we let π1, π2, γ1, γ2 be variables in (5a)-(5i) we obtain a bilinear mixed integer separation

problem for cross cuts given by (5a)- (5j), and

π1, π2 ∈Zn1, γ1, γ2 ∈Z. (8)

This separation problem will automatically select a cross disjunction from all possible cross

disjunctions. A similar bilinear separation problem can be formulated for crooked cross cuts

as well. Unfortunately, in both cases the bilinear problem is significantly harder to solve

than the original separation problem as it contains integer variables as well as non-convex

constraints. Still, the same can be said of the bilinear program for split cuts introduced

in Dash et al. (2010), Balas and Saxena (2008) and these later formulations proved useful

when (approximately) solved with specialized techniques. Developing similar techniques

for the bilinear mixed integer separation problem for the cross closure or crooked cross

closure is possible but it is beyond the scope of this paper.

3.4. When the separation LP fails

For a given disjunction, if the associated separation LP fails to produce a cut violated by

the point p̄= (x̄, ȳ), useful information can be extracted from the optimal solution of the

dual of the LP. For simplicity, consider a split disjunction S(π,γ) = S1(π,γ)∪S2(π,γ) such

that p̄ 6∈ S(π,γ) and assume that p̄∈ PS(π,γ). In this case, for some 1>µ> 0

p̄= µp1 + (1−µ)p2 such that pi ∈ PLP ∩Si(π,γ), for i= 1,2.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
12 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

We refer to points p1, p2 as a pair of friends of p̄. From a computational point of view,

this information can be very useful when selecting a new disjunction from among a list of

candidate disjunctions to find cuts separating the same point p̄. More precisely consider

a second disjunction S(π′, γ′) not containing p̄. If both p1, p2 obtained from the previous

disjunction belong to S(π′, γ′), then clearly p̄ ∈ PS(π′, γ′), and therefore no violated split

cut can be derived from S(π′, γ′). We note that a similar idea is developed and used

independently by Fischetti and Salvagnin (2011). We discuss how we exploit this idea

further in Section 6.

friends

(a) (b) (c) (d)
Figure 2 Friends of a point.

The idea of friends is illustrated in Figure 2. For simplicity, this figure shows the pro-

jection onto a two dimensional space that contains the π’s for all the split disjunctions

considered. In Figure 2(a), we depict a pair of friends of p̄ obtained from the displayed

disjunction, say S(π,γ). The polygon represents PLP , the pair of parallel vertical lines rep-

resent the hyperplanes πx= γ and πx= γ + 1 that define the disjunction and the shaded

regions represent the atoms of the disjunction intersected with PLP . The point p̄ is repre-

sented by a filled square, and the friends are represented by filled circles. In Figure 2(b), we

depict a pair of “good” friends of p̄ (defined below) obtained from a different disjunction.

In Figure 2(c), we depict a disjunction by a pair of horizontal lines, and show the two pairs

of friends of p̄ from Figures 2(a),(b). One pair does not belong to the disjunction, but the

other pair does and consequently no violated split cut can be obtained from this disjunc-

tion. Figure 2(d) shows a cross disjunction that excludes one friend from each disjunction

and therefore has the potential of producing violated cuts.

We next discuss how to generate a pair of friends from the separation LP when it does not

produce a violated cut. Remember that the normalization constraint (5j) requires taking

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 13

the absolute value of the λ variables and therefore in the reformulation of the split cut

separation LP below, we use two sets of nonnegative variables. Let (x̄, ȳ)∈ PLP denote the

point to be separated.

min z = ax̄+ cȳ− d (9)

subject to

a≥ λ1,+A−λ1,−A−α1π, d≤ λ1,+b−λ1,−b−α1γ (10)

a≥ λ2,+A−λ2,−A+α2π, d≤ λ2,+b−λ2,−b+α2(γ+ 1)

(11)

c≥ λi,+G−λi,+G for i= {1,2} (12)

λi,+, λi,−, βi, αi ≥ 0, for i= {1,2} (13)

a, c, d free. (14)

2∑
i=1

(αi +βi +
m∑
j=1

(λi,+j +λi,−j))≤1 +n1 +n2. (15)

Note that when (x̄, ȳ)∈ PS(π,γ), the optimal solution to the separation LP has z = 0. Now

consider the dual of this LP which also has an optimal value of 0.

max (1 +n1 +n2)η (16)

subject to

Aui +Gvi ≤ ωib−1η for i= 1,2 (17)

−Aui−Gvi ≤−ωib−1η for i= 1,2 (18)

−πu1 ≤−ω1γ− η (19)

πu2 ≤ ω2(γ+ 1)− η (20)

−u1−u2 = x̄ (21)

−v1− v2 = ȳ (22)

ω1 +ω2 =−1 (23)

ui, vi, ωi, η≤ 0 for i= 1,2 (24)

Here, for i= 1,2, ui ∈Rn1, vi ∈Rn2, and η, ωi ∈R.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
14 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Let (û1, û2, v̂1, v̂2, ω̂1, ω̂2, η̂) be an optimal dual solution. As the optimal objective value

of the dual problem equals 0, we have 0 = (1 + n1 + n2)η̂ and therefore η̂ = 0. Therefore,

constraints (17) and (18) imply that Aûi+Gv̂i = ωib for i= 1,2. First assume that ω̂1, ω̂2 <

0, and let

ūi = ûi/ω̂i and v̄i = v̂i/ω̂i

Note that (ūi, v̄i) ≥ 0 and Aūi + Gv̄i = b and therefore (ūi, v̄i) ∈ PLP for i = 1,2. Next,

notice that (x̄, ȳ) is a convex combination of (ū1, v̄1) and (ū2, v̄2) as (21)–(24) imply that

x̄= (−ω̂1)ū
1 + (−ω̂2)ū

2 and ȳ= (−ω̂1)v̄
1 + (−ω̂2)v̄

2. (25)

Finally, due to (19) and (20), we have (ūi, v̄i)∈ Si(π,γ) and consequently, the points (ūi, v̄i)

for i= 1,2 give a pair of friends for (x̄, ȳ).

Next consider the case when one of ω̂1, ω̂2 is zero. Without loss of generality, let ω̂1 =−1

and ω̂2 = 0. Let ū =−û1, v̄ =−v̂1 and du =−û2, dv =−v̂2 and notice that by (17), (18)

and (24), (ū, v̄) ∈ PLP and (du, dv) belongs to the recession cone of PLP . Also notice that

πū≤ γ and πdu ≥ 0 by (19) and (20), respectively. Furthermore, as x̄= ū+du by (21), and

as πx̄ > γ we have πdu > 0. Therefore, π(ū+αdu)≥ γ+ 1 for some α> 0 and points (ū, v̄)

and (ū, v̄) +α(du, dv) give a pair of friends for (x̄, ȳ).

Therefore if the split cut separation LP fails to produce a violated cut, then it is possible

to produce a pair of friends of p̄, namely, p1, p2 ∈ PLP such that p̄ = (1− µ)p1 + µp2 for

some µ with 0<µ< 1. In other words,

p2 = p1 +
1

µ
(p̄− p1).

Now consider a point p′ = p1 + θ(p̄− p1) such that θ > 1/µ. If p′ ∈ PLP , then clearly p1

and p′ also form a pair of friends for p̄. Moreover, from a computational point of view,

this new pair is more useful than p1, p2 for checking if disjunctions other than S(π,γ)

have the potential to yield violated cuts. Assume p̄ 6∈ S(π′, γ′) 6= S(π,γ). If p1, p2 ∈ S(π′, γ′)

(implying that p̄∈ PS(π′, γ′)), then p′ ∈ S(π′, γ′). Consequently, it is best to find the point

p̄2 = p1 + θ(p̄ − p1) ∈ PLP such that θ is maximized. Similarly, one can find the point

p̄1 = p2 + θ(p̄− p2)∈ PLP such that θ is maximized. We call the new pair of friends p̄1 and

p̄2 good friends of p̄; see Figure 2(b).

It is possible to extend these ideas to separation LPs other than the split cut separation

LP but the analysis is more tedious and as we discuss later in Section 6, we implemented

this idea only for split cut separation.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 15

4. Separating cross cuts using rank-2 split cuts

In this section we describe separation heuristics to find violated cross cuts. Solving the

separation problem exactly for split cuts is hard for practical instances (Balas and Saxena

2008, Dash et al. 2010) and we expect that finding violated cross or crooked cross cuts

will also be very hard. For computational tractability, we do not attempt to generate a

cross disjunction from scratch but instead focus on extending existing split cut heuristics

to the cross cut setting. To achieve this we use the following proposition, which shows that

certain rank-2 split cuts are also cross cuts. We note that not all rank-2 split cuts are cross

cuts and these two cut families do not dominate each other (Dash et al. 2012b).

Proposition 1. Let π1 ∈Zn1 and γ1 ∈Z. Any split cut for PS(π1, γ1) is a cross cut for

P . Furthermore, if a split cut for PS(π1, γ1) is obtained from the split disjunction S(π2, γ2),

then the same cut is a cross cut for P obtained from the cross disjunction C(π1, π2, γ1, γ2).

L et ax + cy ≥ d be a split cut for PS(π1, γ1) obtained from the split disjunction

S(π2, γ2). We will call ax+ cy≥ d simply “the cut” in the rest of the proof. By definition,

the cut is valid for both PS(π1, γ1)∩S1(π2, γ2) and PS(π1, γ1)∩S2(π2, γ2) where S1(π2, γ2)

and S2(π2, γ2) are the two half-spaces that define the disjunction S(π2, γ2) as defined in

Section 2.1. In addition, note that

PLP ∩S1(π1, γ1), P
LP ∩S2(π1, γ1)⊆ PS(π1, γ1)

as PS(π1, γ1) is the convex hull of the union of these two sets.

Clearly, as the cut is valid for PS(π1, γ1)∩S1(π2, γ2), it is valid for its subsets

PLP ∩S1(π1, γ1)∩S1(π2, γ2) and PLP ∩S2(π1, γ1)∩S1(π2, γ2).

Similarly, the cut is also valid for

PLP ∩S1(π1, γ1)∩S2(π2, γ2) and PLP ∩S2(π1, γ1)∩S2(π2, γ2).

To conclude the proof, it is sufficient to observe that

Si(π1, γ1)∩Sj(π2, γ2) =C2i+j−2(π1, π2, γ1, γ2)

for i, j ∈ {1,2}, which shows that the cut is valid for PLP ∩ Ck(π1, π2, γ1, γ2) for k ∈
{1,2,3,4}.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
16 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

PLP ∩S1(π1, γ1) PLP ∩S2(π1, γ1)

Split cut for PS(π1, γ1)
PS(π1, γ1)

Figure 3 Rank-2 split cuts which are also cross cuts.

In Figure 3 we show an example demonstrating how Proposition 1 works. The first

picture shows PLP ∩S(π1, γ1), and the second picture shows its convex hull PS(π1, γ1). The

last picture shows a split cut for PS(π1, γ1) which is also a cross cut for P .

We next shows that some known rank-2 split cuts, called 2-step MIR cuts, are also cross

cuts. Dash and Günlük (2006) study the following simple mixed-integer set

Q=
{
y ∈R, x1, x2 ∈Z : y+αx1 +x2 ≥ β, y,x1 ≥ 0

}
.

where β,α∈R and 1>β >α> 0, and show that

(
1/(β−αbβ/αc)

)
y+x1 + dβ/αex2 ≥ dβ/αe (26)

is valid (and facet defining) for Q provided that 1/α≥ dβ/αe>β/α. The validity proof in

Dash and Günlük (2006) essentially shows that the 2-step MIR inequality (26) is an MIR

inequality (or, split cut) for the set Q′ ⊆Q obtained by strengthening the original set with

the simple MIR inequality

y+αx1 +βx2 ≥ β,

obtained using the disjunction {x : x2 ≤ 0} ∪ {x : x2 ≥ 1}. As inequality (26) is a split cut

for Q′ ⊇QS([0,1],0), by Proposition 1, it is a cross cut for the original set Q.

We next present two heuristics that separate cross cuts that are rank-2 split cuts. We

begin with a MIP-based heuristic which yields effective cuts but it is time consuming. The

second heuristic is based on a split cut heuristic by Dash and Goycoolea (2010) and as it

is LP-based, it is significantly faster.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 17

4.1. An MIP based heuristic when one of the disjunctions is fixed

As discussed in Section 2.1, given (x̄, ȳ) ∈ PLP , finding a violated split cut is equivalent

to finding an implied equation of the form (2), such that the associated MIR cut (3) is

violated by (x̄, ȳ). This is a difficult computational task. Notice that when β̂ 6= 0, the MIR

cut (3) can also be rewritten as

n1∑
i=1

(baic+ min(
âi

β̂
,1))xi +

1

β̂

n2∑
i=1

max(ci,0)yi ≥ dβe, (27)

for a given base inequality ax+ cy ≥ β that is implied by PLP . If this base inequality is

instead implied by PS(π1, γ1) for some split disjunction S(π1, γ1), the MIR inequality (27)

is now a rank-2 split cut for PLP that is also a cross cut. Instead of explicitly constructing

PS(π1, γ1) – which can be quite difficult – we use the fact that an inequality is implied by

PS(π1, γ1) if and only if it is implied both by PLP ∩S1(π1, γ1) and PLP ∩S2(π1, γ1). We can

then easily characterize the required implied inequalities in a manner similar to the char-

acterization of split cuts (as being valid for two polyhedra). However, separating an MIR

inequality (27) based on an inequality that is valid for two polyhedra is computationally

difficult. We therefore instead use the weakening of (27) given by

n1∑
i=1

daiexi +
1

ε

n2∑
i=1

max(ci,0)yi ≥ dβe, (28)

for any positive ε ≤ β̂. This approximate MIR cut is also a split cut obtained from the

disjunction (4). Also notice that inequality (28) becomes the so-called pro-CG cut (see

Bonami et al. (2008)) when all ci are non-positive and therefore the second summation in

inequality (28) vanishes. Below we write an MIP model for separating this approximate

MIR cut. Clearly, the existence of a violated MIR cut does not guarantee the existence of a

violated approximate MIR cut. However, our MIP model always returns a base inequality

from which an MIR cut can be derived. Additionally, the associated split disjunction can

be used to obtain other split cuts using a separation LP (we note that this is the underlying

idea used in Balas and Saxena (2008) to separate split cuts). Writing this MIP for a base

inequality implied by PLP ∩S1(π1, γ1) and PLP ∩S2(π1, γ1) yield the following rank-2 split

cut separation MIP where ε ∈ (0,1) is a given constant and ã and c̃ are unknown row

vectors with n1 and n2 components respectively, and b̃ is an unknown number.

min z = ãx̄+
1

ε
c̃ȳ− (b̃+ 1) (29a)

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
18 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

subject to:

ã≥ λ1A+α1π, (29b)

ã≥ λ2A−α2π, (29c)

c̃≥ λ1G (29d)

c̃≥ λ2G (29e)

b̃+ ε≤ λ1b+α1γ (29f)

b̃+ ε≤ λ2b−α2(γ+ 1) (29g)

c̃, α1, α2 ≥ 0, ã, b̃, λ1, λ2 free (29h)

ã∈Zn1, b̃∈Z. (29i)

Consider a feasible solution for this model. Let a∈Rn1, c∈Rn2 be vectors defined by c=

max{λ1G,λ2G} and a= max{λ1A,λ2A} with the maximum being taken componentwise.

Let β = b̃+ ε≤min{λ1b+α1γ,λ2b−α2(γ+ 1)}. Then ax+ cy≥ β is a valid inequality for

PLP ∩S1(π,γ) and PLP ∩S2(π,γ). As dβe= b̃+ 1 and β−bβc ≥ ε,

ãx+
1

ε
c̃y≥ b̃+ 1 (30)

is an approximate MIR cut derived from ax + cy ≥ β. If the associated disjunction is

S(π′, γ′), then (30) is a cross cut for the cross disjunction C(π,π′, γ, γ′). Furthermore, once

the base inequality is ax + cy ≥ β is obtained, we can write the actual MIR inequality

(27) using it. Additionally, even if the MIR inequality is not violated, we can still use the

separation LP for C(π,π′, γ, γ′) to obtain additional cross cuts.

We next present the actual heuristic we used in our computational study. As this MIP-

based heuristic is computationally expensive, we do not actually run it to find rank-2 MIR

cuts, instead, we use the split disjunction identified by it to separate cross cuts using the

heuristic Cross.LP.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 19

Algorithm 2: Cross.MIP(S,P, (x̄, ȳ) , p).

Input: List of split disjunctions S, a mixed integer set P , point (x̄, ȳ)∈ PLP and list

size p.

Result: List of cuts L and list of cross disjunctions D.

1 Set L= ∅,D= ∅.

2 for (π,γ)∈ S do

3 Use the MIP heuristic to find the most violated approximate MIR cut for

P IP
S (π,γ).

4 Obtain the associated split disjunction (π′, γ′).

5 Set L=L∪Cross.LP ({(π,γ,π′, γ′)} , P, (x̄, ȳ) ,1).

6 Set D=D∪{(π,γ,π′, γ′)}.

7 if |L| ≥ p then exit the for loop.

8 end

4.2. A fast LP based heuristic

Our next procedure generates split cuts for an approximation of PS(π,γ) instead of PS(π,γ)

itself. Remember that PS(π,γ) denotes the convex hull of PLP ∩ S(π,γ) and as such its

linear description can be obtained by adding all possible split cuts that can be generated

by the disjunction S(π,γ) to PLP . If P̃S(π,γ) is a relaxation of PS(π,γ), any split cut for

P̃S(π,γ) is a split cut for PS(π,γ) and therefore a cross cut for P .

In this heuristic, we obtain the set P̃S(π,γ) by using the split cuts that have been

generated earlier in the computation. Every time a split cut is generated by one of our

procedures, we keep track of the split disjunction used to generate the cut and associate cuts

with disjunctions. An approximation of PS(π,γ) can then be easily constructed by adding

to PLP all cuts that are associated with S(π,γ). We then generate split cuts for P̃S(π,γ)

using the rank-1 GMI heuristic of Dash and Goycoolea (2010) (referred to henceforth

as the DG heuristic), which is an LP-based heuristic that finds violated split cuts using

simplex tableau rows associated with feasible and infeasible bases. Given a point to be

separated, their heuristic constructs a basis and selects violated rank-1 GMI cuts from the

corresponding tableau rows which, as discussed earlier, are split cuts. They show that this

approach produces cuts that give a reasonably good approximation of the split closure

for problems in MIPLIB 3.0. Subsequent papers by Fischetti and Salvagnin (2011) and

Bonami (2012) confirm this observation and give faster heuristics to find such cuts.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
20 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

We next present the separation algorithm that we used in our computational study. The

input of the algorithm includes a list of triplets (π,γ,K) where (π,γ) is a disjunction and

K is a list of split cuts associated with this disjunction. We obtain P̃S(π,γ) by adding

all the cuts in K to PLP . As this is a fast heuristic, we do not always run the Cross.LP

separation unlike the Cross.MIP heuristic described earlier. However, we still keep track

of pairs of split disjunctions (or cross disjunctions) that lead to violated inequalities for

possible future use. Every time a rank-1 GMI cut is found for P̃S(π,γ) , we identify the

associated disjunction (π′, γ′) and save the cross disjunction (π,γ, π̃, γ̃) in a list of good cross

disjunctions for later calls to Cross.LP. In our preliminary computational experiments, we

realized that cut generation time increases significantly as more and more disjunctions are

considered. Consequently, in the final version of this separation heuristic, we decided to

limit the total number of disjunctions for which we add cuts instead of limiting the total

number of cuts.

Algorithm 3: Cross.DG(S+, P, (x̄, ȳ) ,R).

Input: List of split disjunctions with associated cuts S+, a mixed integer set P , point

to separate (x̄, ȳ)∈ PLP and rounds of cuts R.

Result: List of cuts L and cross disjunctions D.

1 Set L= ∅, D= ∅ and r= 0.

2 for (π,γ,K)∈ S+ do

3 Set P̃S(π,γ) = P ∩K. /* Add cuts in K to P */

4 Use the DG heuristic to find violated rank-1 GMI cuts for P̃S(π,γ).

5 Let {(cj, πj, γj)}j∈J be the cuts with associated split disjunctions.

6 if |J |> 0 then

7 Set L=L∪{cj}j∈J .

8 Set D=D∪{(π,γ,πj, γj)}j∈J .

9 Set r= r+ 1.

10 end

11 if r≥R then exit the for loop.

12 end

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 21

5. Cross cuts from two tableau rows

In this section we report on our computational experiments with cross and crooked cuts

derived from two-row relaxations that are obtained by taking pairs of optimal simplex

tableau rows of the LP relaxation of the MIP. Our aim here is to establish that cuts

obtained from such two row relaxations are indeed stronger than cuts that can be obtained

from one row relaxations defined by single tableau rows.

Previous experiments (Fukasawa and Goycoolea 2011) show that GMI cuts obtained

from the optimal tableau rows give the same objective bound as all cuts that can be

obtained from one row relaxations that are defined by a tableau row plus the integrality

and bound information on the variables. In our experiments we observe that cuts from two

tableau rows increase the lower bound on the objective function value significantly on the

same problem set.

Our approach is different from that of Dey et al. (2010) who also experiment with cuts

obtained from pairs of tableau rows. The computational approach in Dey et al. (2010) can

be summarized as follows:

(i) construct the two-row continuous group relaxation from a given pair of tableau rows

by relaxing the integrality of non-basic integral variables,

(ii) find violated 2D lattice-free cuts, in particular triangle cuts of type 2, and

(iii) then lift the coefficients of the variables which were relaxed to be continuous, so as

to re-introduce integrality information.

In contrast, we do not work with the continuous group relaxation but instead generate split,

cross and crooked cross cuts from the two-row relaxation that is formed by a pair of tableau

rows and the integrality and bound information on all variables. In other words, we work

with tighter relaxations as we keep the integrality and bound information on all variables.

We next formally define the relaxations we are interested in and discuss our computational

approach and results. We note that our preliminary computational experiments suggest

that the additional gap closed by crooked cross cuts over cross cuts is not significant.

5.1. One-row vs two-row relaxations

Given a mixed-integer program of the form

min{cTx :Ax= b, l≤ x≤ u, xk ∈Z ∀k ∈ T},

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
22 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

where T is the set of indices of the integer variables, consider the reformulation obtained

by using an optimal basis of the LP-relaxation:

min{cTx : xB +A−1
B ANxN =A−1

B b, l≤ x≤ u, xk ∈Z ∀k ∈ T},

where xB and xN denote the basic and non-basic variables and AB and AN denote the

submatrix of A corresponding to the the basic and non-basic variables, respectively. For

each row of this relaxation where the basic variable xBi
is integral, i.e. Bi ∈ T, but the

right-hand side is fractional, we define the following one-row relaxation of the feasible

region:

Pi = {x : xBi
+
∑
k∈N

āikxk = b̄i, l≤ x≤ u, xk ∈Z ∀k ∈ T},

where āik denotes the k’th entry of the associated row of A−1
B AN and b̄=A−1

B b. It is well-

known that the Gomory mixed-integer (GMI) cut derived from the ith row of the simplex

tableau is a valid inequality for Pi. Following Balas et al. (1996), we refer to adding all

violated GMI cuts simultaneously to the LP relaxation as a round of GMI cuts.

Subsequent to the work in Dash and Günlük (2008) and Fischetti and Saturni (2007)

comparing the effectiveness of one round of GMI cuts to different classes of “one-row”

cuts, Fukasawa and Goycoolea (2011) showed computationally that, for most MIPLIB 3.0

problems, adding all (knapsack) cuts based on the relaxations Pi does not yield improved

bounds over that obtained by adding one round of GMI cuts. In other words, they showed

that no additional cuts from individual rows of an optimal simplex tableau are useful over

and above GMI cuts from these rows for most MIPLIB 3.0 problems.

Therefore, a natural question is whether one can obtain useful valid inequalities by using

pairs of simplex tableau rows that give relaxations of the form:

Pij = {x : xBi
+
∑
k∈N

āikxk = b̄i, xBj
+
∑
k∈N

ājkxk = b̄j, l≤ x≤ u, xk ∈Z ∀k ∈ T},

where i 6= j ∈ {1, . . . ,m}, Bi,Bj ∈ T , and both b̄i and b̄j are fractional. Clearly Pij = Pi∩Pj.

In this section we do not attempt to generate all valid inequalities for Pij but instead

restrict our attention to those that can be generated as cross cuts.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 23

5.2. Computational approach and separation

For a given MIP, we first solve its LP relaxation to obtain an optimal simplex tableau and

the corresponding solution. We then identify the “numerically stable” rows of the tableau

that lead to violated GMI cuts (i.e., the rows i such that Bi ∈ T and b̄i is fractional). As in

Fischetti and Salvagnin (2011), a tableau row is considered numerically stable if the ratio

of its largest coefficient to its smallest coefficient (in absolute value) is not too large; more

precisely we only consider tableau rows with max{|aik|/|ail| : k, l ∈N} ≤ 109 as in Fischetti

and Salvagnin (2011). Let the set of such tableau row indices be I0. For each i, j ∈ I0, we

then construct the two-row relaxation Pij provided that the defining equations for Pi and

Pj have common non-basic variables with non-zero coefficients. We let I ⊂ I0× I0 be the

set of all such pairs of row indices. The motivation for ignoring index pairs i, j where the

associated tableau rows do not have any variables in common is that both split cuts (and

rank-2 split cuts) from such Pij are implied by split cuts (and rank-2 split cuts) from Pi and

Pj (Dash 2010), and the experimental work by Fukasawa and Goycoolea (2011) suggests

that cuts in addition to the GMI cuts from individual rows are unlikely to be very useful.

In our experiments, we observe that |I| is usually much less than |I0|(|I0|−1)/2 leading to

much faster computing times without a noticeable decrease in final bounds obtained.

We use a few different procedures to generate cuts from the two row relaxations Pij.

Our first procedure separates split cuts from two-row relaxations Pij via the DG heuristic

(Dash and Goycoolea 2010). In this case we invoke the feas, sparse and random versions

of the heuristic; see (Dash and Goycoolea 2010, Table 4).

Algorithm 4: Split2.heur(I,P,Q, (x̄, ȳ))

Input: List of row index pairs I, original mixed integer set P , current LP relaxation

Q⊆ PLP and point (x̄, ȳ)∈Q.

1 for (i, j)∈ I do

2 Use the DG heuristic to find rank-1 GMI cuts for Pi,j violated by (x̄, ȳ).

3 if violated cuts are found then

4 Add the violated cuts to Q.

5 Solve Q and let (x̄, ȳ) be its solution.

6 Restart the for loop from the beginning.

7 end

8 end

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
24 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

As we may repeat the for loop in the above procedure multiple times, we may consider

the same Pij multiple times in order to generate cuts, which differs from the approach

described in Dey et al. (2010) and Basu et al. (2011). Also note that in this procedure

we do not restrict the number of cuts added. Using this procedure, we are able to show

that split cuts from two row relaxations yield significantly better bounds than one round

of GMI cuts.

Our second procedure uses the DG heuristic to generate cross cuts through the Cross.DG

procedure (see Algorithm 3 in Section 4.2). The main input to this procedure is the list

of GMI cuts and associated split disjunctions for the tableau rows indexed by I0. More

precisely the list is defined as LGMI = (πi, γi,{gi})i∈I0 where gi denotes the GMI cut derived

from row i and (πi, γi) is the associated split disjunction. The output of the procedure

consists of good cross disjunctions together with the associated pairs of row indices which

we later use in the LP cross cut separator.

Algorithm 5: Cross2.heur(I,P,LGMI ,Q, (x̄, ȳ))

Input: List of row index pairs I, original mixed integer set P , list of GMI cuts with

associated split disjunctions LGMI , current LP relaxation Q⊆ PLP and point

(x̄, ȳ)∈Q.

Result: List IGOOD of cross disjunctions with associated row index pairs.

1 Set IGOOD = ∅.

2 for (i, j)∈ I do

3 Set (C,D) = Cross.DG ({(πi, γi,{gi}) , (πj, γj,{gj})} , Pi,j, (x̄, ȳ) ,∞).

4 if |C|> 0 then

5 Set IGOOD to the union of IGOOD and D×{(i, j)}.

6 Add the violated cuts C to Q.

7 Solve Q and let (x̄, ȳ) be its solution.

8 Restart the for loop from the beginning.

9 end

10 end

We also define a routine Cross2.MIP – which generates cross cuts from pairs of tableau

rows – by simply replacing the call to Cross.DG in line 3 above by the call

(C,D) = Cross.MIP
({(

πi, γi
)
,
(
πj, γj

)}
, Pi,j, (x̄, ȳ) ,2

)
.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 25

In other words, for every Pij with (i, j) ∈ I, we find an approximate MIR cut for

conv
(
PLP
ij ∩S(πi, γi)

)
and conv

(
PLP
ij ∩S(πj, γj)

)
.

To separate cross cuts which are not necessarily rank-2 split cuts, we use the following

LP separation routine which takes as input a list I+ of row index pairs with associated

split disjunctions.

Algorithm 6: Cross2.LP(I+, P,Q, (x̄, ȳ))

Input: List of row index pairs with associated split disjunctions I+, original mixed

integer set P , current relaxation Q and initial point to separate

(x̄, ȳ)∈Q⊆ PLP .

1 for (π1, γ1, π2, γ2, i, j)∈ I+ do

2 if Cross.LP ({(π1, γ1, π2, γ2)} , Pi,j, (x̄, ȳ) ,1) yields a violated cut then

3 Add cut to Q, resolve Q and let (x̄, ȳ) be its solution.

4 Restart the for loop from the beginning.

5 end

6 end

The first list we consider for the argument I+ is IGMI := {(πi, γi, πj, γj, i, j)}(i,j)∈I where

(πi, γi) is the disjunction associated with the GMI cut gi derived from row i. The second

set we consider is IGOOD obtained from Cross2.heur.

5.3. Computational Experiments

Our computational results are obtained on a 2.93 GHz Intel Xeon machine running the

Linux operating system. We solve linear programs and auxiliary integer programs (in

Cross.MIP) with IBM ILOG CPLEX 12.2. In general, our computing times for the algo-

rithms Cross2.LP and Cross2.MIP are nontrivially larger than the times for Split2.heur

and Cross2.heur; our implementation of the first two routines is not competitive with the

codes for the latter two routines.

We next discuss the integrality gap closed with cuts obtained using the routines in

Section 5.2 for 54 out of 65 instances from MIPLIB 3.0. For an MIP where the objec-

tive function is to be minimized as in the MIPLIB instances, the integrality gap closed

(abbreviated to as “gap closed”) by a set C of cuts is

(Obj. value after cuts C are added - LP relaxation value)

(MIP optimum value - LP relaxation value)
× 100.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
26 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

The 11 instances that we discard either have no integrality gap left, or no integrality gap

closed after extensive generation of split cuts as reported in Balas and Saxena (2008),

Dash et al. (2010); these instances are dsbmip, enigma, noswot, air03, 10teams, mod010,

markshare1, markshare2, pk1, stein27, and stein45. Further, we replace free variables in

any remaining instance with the difference of two nonnegative variables.

Figure 4 Flow chart for experiments with 2-row cuts

We execute the algorithms in Section 5.2 in the order shown in the flowchart in Figure 4.

At the end of each algorithm, we terminate if the total elapsed time exceeds one hour.

We thus run the separation algorithms sequentially in increasing order of computational

difficulty. Consequently, the total gap closed after each algorithm is non-decreasing; also we

never delete cuts, and therefore the number of cuts generated at the end of each algorithm

also non-decreasing.

We present our computational results in Table 1 where the problem name is given in

the column titled “problem”. The next three columns give, respectively, the gap closed

by one round of GMI cuts, the number of violated GMI cuts, and time taken to obtain

these cuts (i.e., to generate them, and to reoptimize the LP after adding them). We then

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 27

give similar information for cuts generated by Split2.heur, Cross2.heur, and finally for

cuts generated by all algorithms (under the heading all, which is how we will refer to

the combination of all algorithms henceforth). Note that the computing time for some

instances exceeds 3600 seconds as we check against the time limit only at the end of each

algorithm in the flowchart in Figure 4. We terminate the overall procedure at one hour

for swath as Cross2.LP(IGMI , P,Q, (x̄, ȳ)) starts before an elapsed time of an hour and

takes almost 9 hours. However, the number of cuts and time reported for each algorithm

do not include the number of GMI cuts and time taken to obtain them, though they

include the number of cuts and time for any other preceding algorithm. If we reach the

time limit before completing all algorithms, say while executing Split2.heur, we give a ’-’

in subsequent columns. Finally, in the last line, we give the arithmetic means of gap closed

and geometric means of running time and number of cuts added. If for some problem, the

time limit is reached before beginning the execution of Cross2.heur (say), then we use the

gap closed, number of cuts and computing time from the preceding executed algorithm

(say Split2.heur) in the means listed in the last row (and similarly for all).

Note that for many problems we obtain a significant increase over the gap closed by one

round of GMI cuts by adding a small number (about the same order of magnitude as the

number of GMI cuts) of cuts generated from two tableau rows. The numbers for the gesa

problems, for example, are especially striking, as the gap closed increases by more than

30% with the addition of a small number of cuts. The additional gap closed as we move

from Split.heur (35.76%) to Cross.heur (37.10%) to all (38.39%) is not as striking, as can

be seen in the averages in Table 1. This is not shocking as the relaxations Pij have only

two rows, and we would expect a few cuts to give a good approximation to the integer

hull.

We observe that if we execute Cross2.LP with I+ set to IGMI after adding one round of

GMI cuts the gap closed is 32.70% on the average as opposed to 37.10% with Cross2.heur

or 35.76% with Split2.heur. This means that the disjunctions found by Cross2.heur or

Split2.heur are useful, and the disjunctions associated with the first round of GMI cuts

alone are not enough to improve the bounds a lot (when used to obtain cuts for Pij).

We note that the average gap closed for 53 out of these 54 problems considered in

Louveaux and Poirrier (2012) (they have numerical difficulties with dano3mip) is 32.38%.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Table 1 Gap closed with two row cuts on MIPLIB 3.0 problems

GMI Split2.heur Cross2.heur all
problem % gap cuts time % gap cuts time % gap cuts time % gap cuts time
air04 6.71 292 4.545 12.71 197 3713.11 - - - - - -
air05 4.64 224 1.141 8.80 154 3247.60 8.80 154 4149.93 - - -
arki001 29.26 56 0.088 42.41 65 12.60 46.77 99 37.58 55.13 580 3618.72
bell3a 60.43 32 0.001 67.08 2 0.06 67.15 3 0.18 67.15 3 63.00
bell5 14.53 25 0.001 17.41 3 0.07 17.41 4 0.17 17.78 12 71.42
blend2 16.36 6 0.002 17.38 11 0.03 18.07 23 0.08 21.62 58 27.91
cap6000 41.65 2 0.069 54.96 11 0.41 62.73 28 1.33 63.76 144 2049.81
dano3mip 0.02 97 48.803 0.03 15 3738.08 - - - - - -
danoint 1.74 52 0.141 1.74 7 17.96 1.74 12 42.22 1.74 97 1131.55
dcmulti 43.08 49 0.007 49.94 29 2.09 52.21 43 5.44 54.62 83 567.88
egout 55.93 40 0.001 58.06 4 0.09 58.45 7 0.25 58.85 9 19.92
fast0507 1.68 306 914.395 1.89 4 3591.79 - - - - - -
fiber 65.02 41 0.008 76.04 25 0.68 76.49 27 1.35 78.87 226 3662.96
fixnet6 10.87 60 0.007 11.33 25 1.09 11.51 32 2.00 11.71 57 96.56
flugpl 11.74 10 0.000 11.74 0 0.01 13.70 9 0.07 14.10 13 20.18
gen 61.62 43 0.006 79.10 22 3.69 79.10 22 4.54 79.10 22 199.03
gesa2 27.19 58 0.013 51.40 37 0.84 64.32 42 1.26 65.00 68 81.18
gesa2 o 30.21 73 0.013 62.42 26 0.68 63.10 42 2.45 63.20 69 155.65
gesa3 45.87 85 0.033 82.37 29 3.72 82.69 36 9.03 83.01 44 446.39
gesa3 o 50.57 100 0.036 85.07 25 4.43 85.25 30 10.77 85.32 35 600.57
gt2 67.72 11 0.001 69.15 36 0.11 69.90 47 0.19 77.09 3314 2319.70
harp2 8.69 10 0.007 13.08 55 0.46 13.70 68 1.03 14.78 628 3613.73
khb05250 74.91 19 0.002 80.75 4 0.22 88.06 18 1.70 88.56 20 68.38
l152lav 1.55 51 0.036 26.08 121 67.39 26.08 122 85.52 26.09 124 4020.90
lseu 48.42 12 0.001 56.97 26 0.09 57.23 34 0.28 59.81 321 498.63
mas74 6.67 12 0.001 9.46 101 0.95 9.46 101 1.07 9.82 156 82.92
mas76 6.42 11 0.001 9.41 57 0.27 10.26 68 0.76 11.83 476 290.42
misc03 7.24 18 0.004 10.34 8 0.13 10.34 12 0.35 11.55 17 218.33
misc06 29.40 13 0.010 30.77 2 0.07 30.77 2 0.12 31.31 11 13.57
misc07 0.72 26 0.008 0.72 11 0.72 0.72 12 1.99 0.72 12 157.45
mitre 80.76 796 0.722 88.64 116 3716.44 - - - - - -
mkc 1.21 70 0.240 23.72 238 203.11 23.72 241 241.75 27.11 822 3647.00
mod008 20.89 5 0.001 61.59 54 0.13 61.61 58 0.22 65.56 106 89.66
mod011 17.11 16 0.093 17.14 3 0.95 17.20 6 3.72 18.73 73 2757.33
modglob 15.10 30 0.002 33.69 67 1.66 35.33 82 2.69 35.44 105 242.57
nw04 62.27 6 0.367 68.44 6 4.82 68.44 6 9.78 68.92 7 4531.45
p0033 54.60 6 0.000 64.91 19 0.02 64.91 19 0.02 66.80 49 31.83
p0201 18.24 20 0.004 18.24 2 0.04 24.42 7 0.16 24.42 14 67.87
p0282 3.70 26 0.002 33.54 213 6.00 33.54 213 6.23 40.68 533 2090.18
p0548 39.46 47 0.004 64.15 336 6.06 68.70 461 14.19 73.49 3971 3631.71
p2756 0.46 36 0.009 0.54 13 0.19 0.54 13 0.34 2.63 81 76.80
pp08a 52.88 51 0.005 64.59 21 0.21 68.84 44 0.62 70.28 57 31.36
pp08aCUTS 30.07 41 0.009 41.12 41 2.19 41.75 48 3.89 42.47 64 139.13
qiu 1.99 36 0.204 1.99 0 0.67 1.99 1 2.48 2.60 46 570.98
qnet1 12.73 49 0.084 28.83 125 125.52 28.92 142 343.12 29.40 321 3687.26
qnet1 o 30.71 11 0.011 33.47 41 0.29 34.43 61 0.92 36.49 284 574.32
rentacar 29.05 16 0.234 29.05 0 0.24 29.05 0 0.67 29.15 2 207.64
rgn 4.49 16 0.001 20.28 33 0.29 24.67 45 0.89 27.92 80 89.49
rout 0.32 29 0.029 3.15 98 13.47 4.01 169 219.41 4.03 504 3731.11
set1ch 38.11 138 0.011 56.66 137 3.97 60.86 218 19.39 60.86 218 92.80
seymour 8.39 598 37.560 10.11 12 5180.11 - - - - - -
swath 17.66 45 0.099 33.38 10 7.76 33.38 10 21.51 33.38 10 3600*
vpm1 9.45 15 0.002 11.15 6 0.02 11.15 6 0.04 11.15 6 3.89
vpm2 12.58 30 0.003 24.26 33 0.63 26.50 51 1.25 26.63 64 29.76
Average 25.80 32 0.02 35.76 21 1.90 37.10 28 4.26 38.39 67 388.22

For these problems, the respective values for Split2.heur and Cross2.heur are 36.44% and

37.80%. However, the experiments are not comparable, as Louveaux and Poirrier do not

fix the tableau but update it up to five times, and also consider only a subset of all tableau

row pairs.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 29

In Table 2, we give more information on the relative performance of the algorithms in

Table 1. In columns two to four, we repeat the averages for gaps closed, computing time

and number of cuts from the last line of Table 1. In column six, we give the number of

problems for which the gap closed minus the gap closed by one round of GMI cuts is at

least 5%, and in column eight, we give the number of problems for which at least 5% of

the gap remaining after one round of GMI cuts is closed by a given algorithm. In columns

five and seven we give information similar to columns six and eight, respectively, except

that we compare with the gap closed by the previously listed algorithm. First notice that

Split2.heur takes about 100 times the computing time of a round of GMI cuts, and it

improves the gap closed by at least 5% for 29 out 54 problems. For only about 1.34%

extra gap closed, Cross2.heur takes more than twice the time as Split2.heur; furthermore

it improves the gap closed by 5% or more for only 4 problems; in other words, it makes

a big difference only for a small number of problems. However, changing the gap closed

from say 90% to 95% is much harder than from say 30% to 35%; thus an absolute change

in gap closed is not always the best measure of the effectiveness of an algorithm. This is

the reason for considering relative changes in gap closed in columns seven and eight. Even

by this measure, our implementation of cross cut separation makes not as big a difference

as split cut separation from pairs of tableau rows.

Table 2 Comparison of different methods

Average Absolute change Relative change
method gap closed time cuts prev.+5% GMI+5% 5% prev. gap 5% GMI gap
GMI 25.80 0.02 32 - - - -
Split2.heur 35.76 1.90 21 29 29 29 29
Cross2.heur 37.10 4.26 28 4 31 9 34
ALL 38.39 388.22 67 3 35 9 36

It is natural to ask whether we can obtain the gap closed by Cross2.heur (or Split2.heur)

by choosing only a subset of GMI cuts, and generating cuts from associated pairs of rows,

or by carefully choosing pairs of rows. After all, in Cross2.heur, often many pairs of rows

have to be examined before cuts are found. We attempt to answer this question by the

computational experiments summarized in Table 3. In all algorithms considered in this

experiment (except in Cross2.heur.nosort), each time we start the for loop in Section 5.2,

we first sort the GMI cuts in decreasing order of dual values assigned to these cuts in the

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
30 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

previous (strengthened) LP relaxation. Our purpose here is to distinguish between more

and less important GMI cuts. For example, Cross2.heur x 30% means that we generate

cross cuts from pairs of rows associated with the top 30% of GMI cuts only. The next two

rows have a similar meaning. In addition, in the for loop, the sets Pij are considered in

decreasing order of sums of dual values for the associated GMI cuts. For example, the first

set Pij considered for cross cut separation would be the set associated with the two rows

that give the two “most important” GMI cuts (provided that they have common non-basic

variables). The time taken by Cross2.heur x 30% is only 10 times the time to compute

GMI cuts, but it does not close too much more gap. As more pairs of rows are considered

for cross cut separation, more of the gap is closed but at a cost of higher computing times.

Cross2.heur.nosort means we do not sort the GMI cuts by dual values, and simply consider

them in the order they appear in the tableau and a pair (i1, j1)< (i2, j2) if the first pair

is lexicographically less then the second one. It does seem to take noticeably more time

than Cross2.heur to close essentially the same gap (this relationship also holds between

the sorted and non-sorted variants of Cross2.heur x 30% etc.). Thus our heuristic to order

pairs seems useful, but our heuristic to drop pairs altogether seems less so. Finally, we

can get the same gap as Cross2.heur, but in less time if we only consider pairs of tableau

rows which have common variables that are basic in the current relaxation; this is given

in Cross2.heur.basici.

Table 3 Comparison of different variants of
Cross2.heur

Cut Separation Method gap closed time
Cross2.heur 37.10 4.26
Cross2.heur x 30% 29.47 0.11
Cross2.heur x 50% 32.31 0.47
Cross2.heur x 70% 34.56 1.57
Cross2.heur.nosort 36.81 6.08
Cross2.heur.basici 36.94 3.65

6. Bounds on cross and crooked cross cut closures

In this section we report on our computational experiments with cross and crooked cross

cuts that are obtained using the full formulation of a MIP as opposed to using only two-

row relaxations. We aim to establish that cross and crooked cross cuts give better lower

bounds than split cuts on practical problem instances, namely the MIPLIB 3.0 problem

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 31

instances. In earlier experiments with split cuts, Balas and Saxena (2008) and Dash et al.

(2010) present separation models that can, in principle, optimize over the split closure to

any degree of precision. We do not propose any such mechanism for the cross or crooked

cross cut closure; instead, we use heuristics to obtain effective cuts.

We present two computational experiments below. In the first one, we start with a short,

fixed list of split disjunctions (the ones in LGMI , described in Section 5.2) and compare the

effect of split cuts with that of cross and crooked cross cuts that can be generated using the

disjunctions in this list only. In the second experiment, we use heuristics to generate more

split and cross disjunctions, motivated by the belief that not all “good” cross disjunctions

correspond to pairs of split disjunctions from a list of “good” split disjunctions. With our

heuristics, we are able to obtain better bounds than the best known split closure bounds

for a number of problem instances.

6.1. Experiments with GMI disjunctions

In our first experiment, we first solve the LP relaxation of a given problem instance and

identify numerically stable rows of the optimal tableau that yield violated GMI cuts, and

the associated set of indices I0 as in Section 5.2.Let SGMI = (πi, γi)i∈I0, i.e., SGMI is the

list of split disjunctions in LGMI and we call it the list of GMI disjunctions.

We first add the GMI cuts in LGMI (corresponding to the disjunctions SGMI) to PLP and

call the resulting bound the GMI bound. We then separate and add split cuts iteratively

until all the split cuts derivable from the disjunctions in Sgmi are satisfied. We record the

lower bound obtained at the end of this step as the Split bound. To separate split cuts we

use the algorithm Split.LP described in Section 3.1. We generate up to 10 cuts at a time to

speed up the procedure by setting the parameter p= 10 in Split.LP.We note that this does

not affect the final bound obtained by split cuts. In addition, we use the ideas discussed in

Section 3.4 to avoid running the separation LP for disjunctions that cannot separate the

current point at hand.

We next generate cross cuts iteratively from all pairs of disjunctions in Sgmiusing

Cross.LP. To speed up the computation, we always check for violated split cuts using algo-

rithm Split.LP after violated cross cuts are added. In addition, we generate 5 cuts at a

time by setting the parameter p = 5 in Cross.LP.Here we use a smaller number for p in

Cross.LP than in Split.LP as generating cuts using Cross.LP is more expensive. We chose

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
32 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Added cuts?
YES

NO

Added cuts?
YES

NO

Added cuts?
YESNO

GMI

Split

Cross

Crooked Cross

Stop

Figure 5 Flow chart for experiments with GMI disjunctions

the values of p after some preliminary testing.We also use the ideas discussed in Section 3.4

for efficiency. When no further cuts can be generated, we record the lower bound at hand

as the Cross bound.

The last step is to generate crooked cross cuts from all pairs of disjunctions in Sgmi using

CCross.LP with p= 5. To speed up the computation, we look for violated split and cross

cuts after adding violated crooked cross cuts. As before, we skip solving separation LPs for

some disjunctions using ideas from Section 3.4. We call the final bound obtained at the end

of this step the Crooked Cross bound. We summarize the overall procedure in Figure 5.

In Table 4 we report on the average integrality gap closed by different classes of cuts

for 53 MIPLIB 3.0 problems. We consider the same 54 instances discussed in Section 5.3

except fast0507; We exclude it from all experiments in this Section as we have numerical

difficulties with it. The rows of Table 4, respectively, give the gap closed by the first round

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 33

of GMI cuts, split cuts from the GMI disjunctions, cross cuts from the GMI disjunctions

and crooked cross cuts from the GMI disjunctions. For comparison, the last line gives the

average of the best known split closure bounds combining results in Balas and Saxena

(2008), Dash et al. (2010), Dash and Goycoolea (2010).

Table 4 Experiments with GMI disjunctions on MIPLIB problems

Cut family % gap closed
GMI cuts 26.25
Split cuts from GMI disjunctions 41.42
Cross cuts from GMI disjunctions 43.96
Crooked cross cuts from GMI disjunctions 45.15
Best split closure bound 79.89

We make a few observations based on Table 4. The first round of GMI cuts does not yield

a good approximation of the split closure on the average. However, separating additional

split cuts from the GMI disjunctions significantly improves the lower bound. Adding Cross

cuts based on pairs of these disjunctions also yields a non-trivial and yet not very substan-

tial improvement. The average improvement due to crooked cross cuts is non-negligible but

this is a bit misleading as almost all of this improvement is due to two problem instances,

namely gesa2 (about 29%) and modglob (about 16%). Without these two instances, the

extra gap closed is very small on the average, and due to this observation we do not sepa-

rate crooked cross cuts in subsequent experiments. We also note that the bound obtained

using only GMI disjunctions is quite far from the best split closure bound.

6.2. Experiments with cross cuts from heuristic disjunctions

In this section, we attempt to exceed the best known elementary split closure bounds using

cross cuts. The first step in our algorithm is to generate a list of good split disjunctions

using the rank-1 GMI cut heuristic in Dash and Goycoolea (2010). We modify their code

to store the split disjunctions whenever a violated GMI cut is found and keep track of the

GMI cut generated by each disjunction. We call the list of split disjunctions obtained from

the heuristic Sdg. To control the overall computing time, we terminate the heuristic when

the number of generated cuts (and therefore the size of Sdg) exceeds 1000.

Our next step is to separate all split cuts obtainable from Sdg using Split.LP iteratively,

as described in Section 6.1. While generating split cuts, we again keep track of which

cuts are generated using which disjunction. At the end of this step, each split disjunction

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
34 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

in Sdg has at least one GMI cut and possibly many other split cuts associated with it.

We call this combined list of disjunctions together with the cuts associated with each

disjunction the list SCdg. Using these split cuts, we can improve over the best known

split closure bounds for 6 instances. In the next table, for each problem, we give its name,

the percentage gap closed with split cuts in SCdg, the best bounds for the split closure

from Balas and Saxena (2008), Dash et al. (2010), Dash and Goycoolea (2010), and the

percentage 100*(SCdg splits - Best Split)/(100-Best Split).

problem SCdg Best Split Improvement problem SCdg Best Split Improvement

gesa3o 95.3 95.2 2.1 modglob 94.0 92.2 23.1

mkc 52.4 49.3 6.1 qiu 78.1 77.5 2.6

mas74 14.3 14.0 0.3 rentacar 57.1 45.0 40.2

Unlike our experiments with the GMI disjunctions discussed earlier, we do not proceed

to cross cut separation via LPs right away with all pairs of disjunctions in Sdg. Instead, we

proceed with the separation heuristics described in Section 4. First we search for violated

rank-2 split cuts that are cross cuts using the heuristic Cross.DG with the list SCdg. When

separating cross cuts with this heuristic, we also keep track of pairs of split disjunctions

that lead to violated cuts and save them in a list called C for later use. Next, we generate

cross cuts using the MIP heuristic Cross.MIP and then with the LP heuristic Cross.LP

using the pairs of disjunctions in C. Finally we separate cross cuts from CDG which consists

of all pairs of disjunctions in Sdg through Cross.LP. At the end of this step, if we do

not find any violated cross cuts, we terminate, else we fall back to separating split cuts.

The overall algorithm is summarized in Figure 6, where we again note what parts of the

procedure generate a given bound. Finally, while it is not explicitly noted in the figure, we

use the ideas discussed in Section 3.4 to avoid solving LPs that cannot yield any cuts.

In our computational experiments we focus on 31 out of the 53 MIPLIB 3.0 instances

discussed in 6.1 where split cuts close at least 1% and at most 99% of the integrality gap.

For these instances the average gap closed by split cuts is 68.89% (Balas and Saxena 2008,

Dash et al. 2010, Dash and Goycoolea 2010) whereas the gap closed by rank-1 GMI cuts

generated by the DG heuristic def in Dash and Goycoolea (2010) is 47.93%. We run our

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 35

Added cuts?
YES

NO

Added cuts?
YES

NO

Added cuts?
YES

NO

Rank-1 GMI

Split

Rank-2 Split

Added cuts?

Added cuts?

Stop

NO

NO

YES

YESCross

Figure 6 Flow chart for experiments with heuristic disjunctions

code with a time limit of 3 hours and collect the results in a table in the online supplement

(which has the same format as Table 5 below). Examining this table, we observe that

for 16 instances the final gap closed is greater than the best split cut bounds from Balas

and Saxena (2008), Dash et al. (2010), Dash and Goycoolea (2010). We choose these 16

instances (and another three marked by a †) and rerun with a time limit of 48 hours and

more aggressive rank-1 GMI cut generation using a variant of the default DG heuristic in

Dash and Goycoolea (2010) which, in the notation in (Dash and Goycoolea 2010, Table

4), can be expressed as def + bg5000. That is, we invoke their “branch-and-gather”

algorithm for 5000 nodes instead of only 5 nodes, and keep other settings in their default

heuristic def the same to get a better approximation of the split closure.

In Table 5, we report on 16 out of the 32 instances where the bound we obtain with cross

cuts exceeds the best split closure bound (from Balas and Saxena (2008), Dash et al. (2010),

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
36 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Dash and Goycoolea (2010)) by an absolute value of at least 0.5%. For another instance,

namely rentacar, we close 57.1% of the integrality gap with split cuts alone as opposed

to the previously best known bound of 44.9% gap closed using split cuts; however as our

split cut separation code does not terminate within the time limit, we do not generate

any cross cuts and thus omit this instance from Table 5. In the first column, we give

the problem name. In the second, third and forth columns, we give the bounds obtained

by GMI cuts from the initial tableau, rank-1 GMI cuts from the modified DG heuristic,

and split cuts using the disjunctions Sdg. The next two columns give, respectively, the

bound obtained with cross cuts and the best bound obtained with split cuts in Balas

and Saxena (2008), Dash et al. (2010), Dash and Goycoolea (2010). The following column

gives the percentage of the remaining gap (after split cuts) closed by our procedure, i.e.

100∗(Cross−Best Split)/(100−Best Split). The last column gives the overall computing

time and the symbol “+” means that the code reached the time limit of 48 hours. This table

was obtained with the same code and machine type as used in the previous experiments,

except that the clock speed was slightly lower, at 2.33 GHz. In the last row, we give the

arithmetic mean of the gaps closed across the 18 instances.

Table 5 Gap closed with cross cuts on MIPLIB problems

problem GMI DG Split Cross Best Split Improvement time (sec)
bell5 14.5 25.9 86.2 99.8 93.0 97.1 2,120

cap6000 41.7 64.6 65.2 67.2 65.2 5.7 62,097

gesa3 45.9 93.3 95.1 97.4 95.8 38.1 +

gesa3o 50.6 93.1 95.3 99.0 95.2 79.2 124,339

gt2 67.7 96.6 96.7 99.2 98.4 50.0 1,470

mas74 6.7 11.4 14.3 15.7 14.0 2.0 +

mas76 6.4 16.1 25.1 34.5 26.5 10.9 +

mkc 1.2 4.1 52.4 55.3 49.3 11.8 +

modglob 15.1 90.8 94.0 99.0 92.2 87.2 18,273

p0033 54.6 84.1 86.2 100.0 87.4 100.0 301

p0201 18.2 71.5 74.0 98.4 74.9 93.6 +

pp08a 52.9 96.0 96.6 98.4 97.0 46.7 165,687

pp08aCUTS 30.1 93.3 94.7 96.5 95.8 16.7 +

qiu 2.0 21.8 78.1 78.4 77.5 4.0 +

set1ch 38.1 88.0 88.7 98.6 89.7 86.4 +

vpm2 12.6 72.0 76.5 81.7 81.0 3.7 +

Average 25.5 61.3 76.1 82.2 77.3 45.8 +

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 37

The averages of our split cut bounds for these instances and the best split cut bounds are

very close, namely 76.1% and 77.3%, respectively. The average gap closed with additional

cross cuts is 82.2%. In particular, note that for the problem p0033, 86.2% of the integrality

gap is closed by split cuts (and this number is close to the best split cut bound) and cross

cuts close all the remaining integrality gap within a few hundred seconds. On the average,

cross cuts close almost half of the remaining gap after split cuts. Also note that for most

of the instances, the algorithm terminated due to the time limit of 48 hours.

7. Concluding Remarks

Based on our our computational experiments we conclude that cross cuts yield an improve-

ment over split cuts for some practical MIP problem instances. The heuristics we use to

separate these cuts, however, are very computationally intensive and therefore not prac-

tical. An important remaining question is whether or not a fast and effective separation

procedure can be developed to use these cuts to solve MIPs in practice. Most of the cut-

ting planes used in current MIP solvers are split cuts and cross cuts have the potential to

have a nontrivial impact. Unlike cross cuts, however, we are not able to make a case for

crooked cross cuts as the additional benefit gained by separating these cuts does not seem

significant.

We also studied the effect of two-row cuts which have been demonstrated to be signifi-

cant in certain theoretical contexts (for example to obtain the convex hull of the two-row

continuous group relaxation) but have not been shown to be computationally effective for

practical MIPs in earlier studies. Our conclusion based on our experiments is that cuts

from two optimal simplex tableau rows are indeed useful and separating cross cuts from

such rows seems to be more practical then separating 2D lattice-free cuts and then lifting

them.

Acknowledgments

A portion of this research was supported by grant # N000141110724 from the Office of Naval Research. We

would like to thank the two referees for useful comments.

References

Andersen, K., Q. Louveaux, R. Weismantel, L. A. Wolsey. 2007. Inequalities from two rows of a simplex

tableau. M. Fischetti, D. P. Williamson, eds., IPCO , Lecture Notes in Computer Science, vol. 4513.

Springer, 1–15.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
38 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Balas, E. 1979. Disjunctive programming. Annals of Discrete Mathematics 5 3–51.

Balas, E., P. Bonami. 2009. Generating lift-and-project cuts from the lp simplex tableau: open source

implementation and testing of new variants. Mathematical Programming Computation 1 165–199.

Balas, E., S. Ceria, G. Cornuéjols, N. Natraj. 1996. Gomory cuts revisited. Operations Research Letters 19

1–9.

Balas, E., A. Saxena. 2008. Optimizing over the split closure. Mathematical Programming 113 219–240.

Basu, A., P. Bonami, G. Cornuéjols, F. Margot. 2011. Experiments with two-row cuts from degenerate

tableaux. INFORMS J. Comput. 23 578–590.

Basu, A., M. Conforti, G. Cornuéjols, G. Zambelli. 2010. Minimal inequalities for an infinite relaxation of

integer programs. SIAM Journal on Discrete Mathematics 24 158–168.

Bixby, E. R., M. Fenelon, Z. Gu, E. Rothberg, R. Wunderling. 2000. MIP: theory and practice closing the

gap. M.J.D. Powell, S. Scholtes, eds., System Modelling and Optimization, IFIP The International

Federation for Information Processing , vol. 46. Springer US, 19–49.

Bixby, R.E., S. Ceria, C. M. McZeal, M.W.P. Savelsbergh. 1998. An updated mixed integer programming

library: Miplib 3.0. Optima 58 12–15.

Bonami, P. 2012. On optimizing over lift-and-project closures. Mathematical Programming Computation 4

151–179.

Bonami, P., G. Cornuéjols, S. Dash, M. Fischetti, A. Lodi. 2008. Projected chvátal–gomory cuts for mixed

integer linear programs. Mathematical Programming 113 241–257.

Borozan, V., G. Cornuéjols. 2009. Minimal valid inequalities for integer constraints. Math. Oper. Res. 34

538–546.

Conforti, M., G. Cornuéjols, G. Zambelli. 2011a. Corner polyhedron and intersection cuts. Surveys in

operations research and management science 16 105–120.

Conforti, M., G. Cornuéjols, G. Zambelli. 2011b. A geometric perspective on lifting. Oper. Res. 59 569–577.

Cook, W., R. Kannan, A. Schrijver. 1990. Chvátal closures for mixed integer programming problems. Math-

ematical Programming 47 155–174.

Dash, S. 2010. On the complexity of cutting-plane proofs using split cuts. Operations Research Letters 38

109–114.

Dash, S., S. S. Dey, O. Günlük. 2011. On mixed-integer sets with two integer variables. Operations Research

Letters 39 305–309.

Dash, S., S. S. Dey, O. Günlük. 2012a. Two dimensional lattice-free cuts and asymmetric disjunctions for

mixed-integer polyhedra. Mathematical programming 135 221–254.

Dash, S., M. Goycoolea. 2010. A heuristic to generate rank-1 gmi cuts. Mathematical Programming Com-

putation 2 231–257.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!) 39

Dash, S., O. Günlük. 2006. Valid inequalities based on simple mixed-integer sets. Mathematical Programming

105 29–53.

Dash, S., O. Günlük. 2008. On the strength of gomory mixed-integer cuts as group cuts. Mathematical

Programming 115 387–407.

Dash, S., O. Günlük, A. Lodi. 2010. Mir closures of polyhedral sets. Mathematical Programming 121 33–60.

Dash, S., O. Günlük, M. Molinaro. 2012b. On the relative strength of different generalizations of split cuts.

IBM Technical Report RC25326, IBM, Yorktown Heights, NY.

Dey, S. S., A. Lodi, A. Tramontani, L. A. Wolsey. 2010. Experiments with two row tableau cuts. F. Eisen-

brand, F. B. Shepherd, eds., IPCO , Lecture Notes in Computer Science, vol. 6080. Springer, 424–437.

Dey, S. S., A. Tramontani. 2009. Recent developments in multi-row cuts. Optima 80 2–8.

Dey, S. S., L. A. Wolsey. 2010a. Constrained infinite group relaxations of MIPs. SIAM Journal on Opti-

mization 20 2890–2912.

Dey, S. S., L. A. Wolsey. 2010b. Two row mixed-integer cuts via lifting. Mathematical Programming 124

143–174.

Espinoza, D. G. 2010. Computing with multi-row gomory cuts. Operations Research Letters 38 115–120.

Fischetti, M., A. Lodi, A. Tramontani. 2011. On the separation of disjunctive cuts. Mathematical Program-

ming 128 205–230.

Fischetti, M., D. Salvagnin. 2011. A relax-and-cut framework for gomory mixed-integer cuts. Mathematical

Programming Computation 3 79–102.

Fischetti, M., C. Saturni. 2007. Mixed-integer cuts from cyclic groups. Mathematical Programming 109

27–53.

Fukasawa, R., M. Goycoolea. 2011. On the exact separation of mixed integer knapsack cuts. Mathematical

programming 128 19–41.

Fukasawa, R., O. Günlük. 2011. Strengthening lattice-free cuts using non-negativity. Discrete Optimization

8 229–245.

Li, Y., J-P. P. Richard. 2008. Cook, Kannan and Schrijvers’s example revisited. Discrete Optimization 5

724–734.

Louveaux, Q., L. Poirrier. 2012. An algorithm for the separation of two-row cuts. Mathematical Programming

1–36.

Dash, Günlük and Vielma: Computational Experiments with Cross and Crooked Cross Cuts
40 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the mansucript number!)

Online Supplement

Table 6 Gap closed with cross cuts on MIPLIB problems

problem GMI DG Split Cross Best Split Improvement time (sec)

air04 7.42 9.54 25.00 25.00 91.23 - 10,812

air05 4.64 8.49 20.43 20.43 61.98 - 10,827

arki001 29.15 29.97 32.53 39.88 83.05 - 500

bell5 14.53 25.90 86.19 99.80 92.95 97.16 301

blend2 16.36 30.09 35.02 45.95 46.52 - 6,219

cap6000 41.65 62.43 63.55 66.14 65.17 2.78 10,904

danoint 1.74 1.74 4.61 4.72 8.20 - 10,870

gesa3 45.87 90.88 94.93 96.59 95.81 18.62 11,018

gesa3o 50.57 91.28 95.15 97.38 95.20 45.42 11,266

gt2 67.72 96.61 96.73 99.15 98.38 47.53 206

harp2 8.69 52.03 62.71 62.71 67.31 - 10,809

l152lav 1.55 30.44 77.32 82.37 95.20 - 12,176

lseu 48.42 76.43 84.08 93.88 93.75 2.08 749

mas74† 6.67 8.55 10.31 12.43 14.02 - 10,856

mas76 6.42 10.70 18.84 29.08 26.52 3.48 9,532

misc03 7.24 21.44 28.02 36.82 51.70 - 11,188

misc07 0.72 1.61 4.45 9.45 20.11 - 10,815

mkc 1.21 4.14 51.48 51.48 49.30 4.30 10,805

mod011 17.11 27.52 47.38 47.38 72.44 - 10,801

modglob 15.10 81.26 88.25 99.61 92.18 95.01 10,987

p0033 54.60 84.09 86.19 10.00 87.42 10.00 39

p0201 18.24 69.53 73.94 96.99 74.93 87.99 10,843

pp08a 52.88 94.07 95.12 97.83 97.03 26.94 10,802

pp08aCUTS† 30.07 83.44 92.38 95.48 95.81 - 10,863

qiu 4.21 21.76 78.09 78.09 77.51 2.58 13,014

rentacar 29.05 39.87 46.91 46.91 44.95 3.56 10,847

rout 0.32 23.70 54.90 58.61 70.70 - 11,042

set1ch 38.11 86.69 87.57 96.89 89.74 69.69 10,806

seymour 7.15 11.93 31.05 31.05 61.52 - 10,863

swath 17.66 33.96 34.01 34.06 33.96 0.15 10,889

vpm2† 12.58 68.34 74.86 79.51 81.05 - 10,810

Average 21.21 44.47 57.48 62.44 68.89 19.59 5,979

