12,605 research outputs found

    Simulating fluid flows in micro and nano devices : the challenge of non-equilibrium behaviour

    Get PDF
    We review some recent developments in the modelling of non-equilibrium (rarefied) gas flows at the micro- and nano-scale, concentrating on two different but promising approaches: extended hydrodynamic models, and lattice Boltzmann methods. Following a brief exposition of the challenges that non-equilibrium poses in micro- and nano-scale gas flows, we turn first to extended hydrodynamics, outlining the effective abandonment of Burnett-type models in favour of high-order regularised moment equations. We show that the latter models, with properly-constituted boundary conditions, can capture critical non-equilibrium flow phenomena quite well. We then review the boundary conditions required if the conventional Navier-Stokes-Fourier (NSF) fluid dynamic model is applied at the micro scale, describing how 2nd-order Maxwell-type conditions can be used to compensate for some of the non-equilibrium flow behaviour near solid surfaces. While extended hydrodynamics is not yet widely-used for real flow problems because of its inherent complexity, we finish this section with an outline of recent 'phenomenological extended hydrodynamics' (PEH) techniques-essentially the NSF equations scaled to incorporate non-equilibrium behaviour close to solid surfaces-which offer promise as engineering models. Understanding non-equilibrium within lattice Boltzmann (LB) framework is not as advanced as in the hydrodynamic framework, although LB can borrow some of the techniques which are being developed in the latter-in particular, the near-wall scaling of certain fluid properties that has proven effective in PEH. We describe how, with this modification, the standard 2nd-order LB method is showing promise in predicting some rarefaction phenomena, indicating that instead of developing higher-order off-lattice LB methods with a large number of discrete velocities, a simplified high-order LB method with near-wall scaling may prove to be just as effective as a simulation tool

    Open-architecture Implementation of Fragment Molecular Orbital Method for Peta-scale Computing

    Full text link
    We present our perspective and goals on highperformance computing for nanoscience in accordance with the global trend toward "peta-scale computing." After reviewing our results obtained through the grid-enabled version of the fragment molecular orbital method (FMO) on the grid testbed by the Japanese Grid Project, National Research Grid Initiative (NAREGI), we show that FMO is one of the best candidates for peta-scale applications by predicting its effective performance in peta-scale computers. Finally, we introduce our new project constructing a peta-scale application in an open-architecture implementation of FMO in order to realize both goals of highperformance in peta-scale computers and extendibility to multiphysics simulations.Comment: 6 pages, 9 figures, proceedings of the 2nd IEEE/ACM international workshop on high performance computing for nano-science and technology (HPCNano06

    Hierarchical coexistence of universality and diversity controls robustness and multi-functionality in intermediate filament protein networks

    Get PDF
    Proteins constitute the elementary building blocks of a vast variety of biological materials such as cellular protein networks, spider silk or bone, where they create extremely robust, multi-functional materials by self-organization of structures over many length- and time scales, from nano to macro. Some of the structural features are commonly found in a many different tissues, that is, they are highly conserved. Examples of such universal building blocks include alpha-helices, beta-sheets or tropocollagen molecules. In contrast, other features are highly specific to tissue types, such as particular filament assemblies, beta-sheet nanocrystals in spider silk or tendon fascicles. These examples illustrate that the coexistence of universality and diversity – in the following referred to as the universality-diversity paradigm (UDP) – is an overarching feature in protein materials. This paradigm is a paradox: How can a structure be universal and diverse at the same time? In protein materials, the coexistence of universality and diversity is enabled by utilizing hierarchies, which serve as an additional dimension beyond the 3D or 4D physical space. This may be crucial to understand how their structure and properties are linked, and how these materials are capable of combining seemingly disparate properties such as strength and robustness. Here we illustrate how the UDP enables to unify universal building blocks and highly diversified patterns through formation of hierarchical structures that lead to multi-functional, robust yet highly adapted structures. We illustrate these concepts in an analysis of three types of intermediate filament proteins, including vimentin, lamin and keratin

    Superlubricity - a new perspective on an established paradigm

    Full text link
    Superlubricity is a frictionless tribological state sometimes occurring in nanoscale material junctions. It is often associated with incommensurate surface lattice structures appearing at the interface. Here, by using the recently introduced registry index concept which quantifies the registry mismatch in layered materials, we prove the existence of a direct relation between interlayer commensurability and wearless friction in layered materials. We show that our simple and intuitive model is able to capture, down to fine details, the experimentally measured frictional behavior of a hexagonal graphene flake sliding on-top of the surface of graphite. We further predict that superlubricity is expected to occur in hexagonal boron nitride as well with tribological characteristics very similar to those observed for the graphitic system. The success of our method in predicting experimental results along with its exceptional computational efficiency opens the way for modeling large-scale material interfaces way beyond the reach of standard simulation techniques.Comment: 18 pages, 7 figure
    corecore