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Simulating Fluid Flows in Micro and Nano Devices:
The Challenge of Non-Equilibrium Behaviour

Jason M Reese” and Yonghao Zhang
Department of Mechanical Engineering, University of Strathclyde, Glasgow G1 1XJ, UK

Abstract

We review some recent developments in the modelling of non-equilibrium (rarefied) gas flows
at the micro- and nano-scale, concentrating on two different but promising approaches:
extended hydrodynamic models, and lattice Boltzmann methods.

Following a brief exposition of the challenges that non-equilibrium poses in micro- and
nano-scale gas flows, we turn first to extended hydrodynamics, outlining the effective
abandonment of Burnett-type models in favour of high-order regularised moment equations.
We show that the latter models, with properly-constituted boundary conditions, can capture
critical non-equilibrium flow phenomena quite well. We then review the boundary conditions
required if the conventional Navier-Stokes-Fourier (NSF) fluid dynamic model is applied at the
micro scale, describing how 2"-order Maxwell-type conditions can be used to compensate for
some of the non-equilibrium flow behaviour near solid surfaces. While extended
hydrodynamics is not yet widely-used for real flow problems because of its inherent
complexity, we finish this section with an outline of recent ‘phenomenological extended
hydrodynamics’ (PEH) techniques — essentially the NSF equations scaled to incorporate non-
equilibrium behaviour close to solid surfaces — which offer promise as engineering models.

Understanding non-equilibrium within the lattice Boltzmann (LB) framework is not as
advanced as in the hydrodynamic framework, although LB can borrow some of the techniques
which are being developed in the latter — in particular, the near-wall scaling of certain fluid
properties that has proven effective in PEH. We describe how, with this modification, the
standard 2™-order LB method is showing promise in predicting some rarefaction phenomena,
indicating that instead of developing higher-order off-lattice LB methods with a large number
of discrete velocities, a simplified high-order LB method with near-wall scaling may prove to be
just as effective as a simulation tool.

Keywords: microfluidics, nanofluidics, rarefied gas dynamics, non-equilibrium fluid dynamics,
slip flow, Knudsen layer, micro- and nano-scale flows, extended hydorodynamics, lattice
Boltzmann

1. Introduction

The set of Navier-Stokes-Fourier (NSF) equations, with no-velocity-slip and no-temperature-jump
conditions at solid bounding surfaces, is the traditional model for the near-equilibrium transfer of
heat and momentum in fluid flows. While it has proven successful for flows ranging from liquids in
capillaries to the atmospheres of planets, remarkably it can be a very poor predictor of micro-scale
gas flows and nano-scale liquid flows. This is because some surprising non-equilibrium effects occur
in these types of flows that are not obvious under more conventional (macro-scale) circumstances.
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While flow non-equilibrium remained essentially a curiosity from the late 19™-century through to the
mid 20th—century, in order to model and optimise the performance of newly-emerging technologies
that manipulate fluids at the smallest scales it is now important to address this weakness in our
understanding. The non-intuitive flow physics involved also represents an opportunity to engineer
devices with capabilities beyond any currently conceived.

In this paper we describe some of the most recent computational and theoretical tools that
engineers and scientists are bringing to bear on this problem. We focus on gas micro flows, because
in this case methods grounded in the powerful kinetic theory of gases can often be deployed
effectively.

Gas micro- and nano-flow devices are being developed for a broad range of applications, from
extracting biological samples to active aerodynamic flow control*. However, gases confined in small-
scale geometries behave differently from their macro-scale flow counterparts. Examples of this
behaviour include: increased flowrates caused by velocity slip at the wall and the Knudsen layers®,
inverted velocity profiles in cylindrical Couette flows®, and the ‘Knudsen minimum’ in channel
flowrates®. This unique non-equilibrium flow behaviour can also be exploited to make devices with
new capabilities, e.g., the Knudsen pump/compressor has no moving parts®.

Gas flows in miniaturised devices are often low-speed, low-Reynolds-number, and non-equilibrium
(rarefied). The Knudsen number, Kn, indicates whether a gas is in local thermodynamic equilibrium;
in terms of the molecular mean-free-path, 4, and a characteristic length scale, L, of the fluid system:

A A1dO
L 0|dl

where | represents a suitable spatial direction and Q is a quantity of interest, such as the gas density,
pressure or temperature. When the mean-free-path of the gas molecules approaches the length
scale of the flow system, microscopic effects and bulk flow effects become increasingly coupled. Lack
of both scale separation and local thermodynamic equilibrium means that the linear constitutive
relations for viscous-stress and heat-flux, which underpin the NSF set of equations, are no longer
valid.

Kn , (1)

The NSF equations with no-velocity-slip and no-temperature-jump bounding wall conditions are
generally only appropriate when Kn<0.001, but gas flows in micro- and nano-devices are often in the
slip regime (0.001<Kn<0.1) or the transition-continuum regime (0.1<Kn<10). In these regimes, the
gas flows cannot properly be described as “quasi-equilibrium continuum”, nor quite as “free
molecular”. In practice, most devices operate with a range of Knudsen numbers in different parts of
the device; this makes it even more difficult to develop a generalised flow model.

Traditionally, research into non-equilibrium gas flows has been for high-speed (usually aerodynamic)
applications. Highly accurate methods have been developed for these flows, including directly solving
the Boltzmann equation and using the direct simulation Monte Carlo (DSMC) method. However, for
low-speed gas flows, accurate solutions from these kinetic methods are often beyond current
computer capabilities, certainly for practical device design purposes in 3D; DSMC suffers large
statistical scatter, while direct solution of the Boltzmann equation is very computationally-
demanding’®. While DSMC, molecular dynamics, and direct kinetic methods are beyond the scope of
this review paper — and really require a separate article of their own’® — in the absence of
experimental micro- or nano-flow data they are often relied on to provide independent benchmark
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data; many of the models outlined below are explicitly validated against DSMC or other
numerical/molecular data.

It took some 30 years for computational fluid dynamics (CFD) to develop from an academic research
topic into an industrial design tool, but the current rapid development of micro- and nano-
technologies means the need for reliable, accurate and computationally-efficient non-equilibrium
flow models is more urgent. Two leading contenders for such models for gas flows are extended
hydrodynamics and mesoscopic lattice Boltzmann (LB) methods. Both have the advantage of being
more computationally-efficient than molecular-based methods, and both are the focus of much
current work on improving their applicability to non-equilibrium flows. In the remainder of this paper
we outline the development of these two types of methods and discuss both their current
achievements and future challenges.

2. Hydrodynamic approaches
2.1 Extended hydrodynamics

The conventional description of heat and momentum transport in fluid flows is the NSF model, which
is regarded as being accurate only to 1"-order in Kn. ‘Extended hydrodynamics’ refers to transport
models whose approximate nature is more suitable for resolving high-Kn phenomena. While these
models encompass the NSF equations, they include additional terms or equations that are generally
higher-order (and typically non-linear) in the gradients of flow quantities.

Extended hydrodynamics is under active investigation for micro and nano gas flows because it is
presumed it should not be much more expensive computationally than the standard NSF equations,
so complex simulations in 3D could become numerically much more tractable. Another important
advantage is that the extended models reduce to NSF hydrodynamics in regions of low K#, so in
principle the same set of equations can be applied across an entire mixed-rarefaction flow field.

A survey of the literature indicates there have been more than a dozen different extended
hydrodynamic models proposed over the last 20 years or so. The majority of these stem from two
alternative approaches to solving the Boltzmann equation for a gas, i.e.:

g g.{.F% C(f)' (2)

+v =
ot or ov
where f(r,v,t) is the function describing the number density of gas molecules with position » and

velocity v at a certain time t, under the influence of a body force F', and suffering binary collisions
described through the production term C( f'). Equation (2) is presumed to be a suitable model for

the rarefied gas flows that occur in micro and nano systems, so if fcan be calculated then the state of
the gas in the system is known.

DSMC and other direct methods for solving for the distribution function, f, are beyond the scope of
this paper, so we focus here on approximate methods. The classical approach to solving equation (2)
is the Chapman-Enskog technique, where an approximate solution to the molecular velocity
distribution function is proposed as a perturbation series in increasing order in Kn around the
equilibrium Maxwellian distribution. The presumption is that the more terms that are taken in this
series, the better the approximation to the non-equilibrium distribution function. The expressions for
the viscous fluid stress and heat-flux that then follow from taking successive terms in this
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approximation are: the Navier-Stokes equations at 1%-order, the Burnett equations at 2"%-order, and
the super-Burnett equations at 3"order in Kn. Chapman and Cowling™ give a good introduction and
overview of this highly mathematical topic.

Since the first derivation of the Burnett equations in 1935, ample evidence has mounted of their, and
the super-Burnett equations’, inability to reproduce non-equilibrium flow phenomena accurately.
They cannot reproduce Knudsen layer behaviour in micro-flows', and they also demonstrate
pathological instabilities for even simple flows'>*®. We can say with near-definitiveness that the
Burnett and super-Burnett equations are not a promising route for further investigation, even with
the ad hoc corrections sometimes proposed to alleviate the problems with them. (Although see
section 2.2 below and also the work of Lockerby and Reese'® for examples of how the Burnett
equations, applied carefully, can provide insight into the flow behaviour.)

A more promising method of solving the Boltzmann equation was proposed by Grad®. He expanded
the molecular distribution function up to 3"order in a series of Hermite tensor polynomials, with
variable parameters, around the Maxwellian equilibrium state. What are termed Grad’s 13-moment
equations are retrieved for 13 dependent variables in the conservation equation set. These are
somewhat more complicated than the Burnett and super-Burnett equations, in that they involve a
coupling of the viscous stress with the heat-flux.

Struchtrup™ and Struchtrup and Torrilhon'®"” proposed regularised 13-moment equations (denoted
the R13 equations), which are similar to Grad’s equations but introduce some higher-order effects
through a first-order perturbation of the 13-moment expansion. In this framework, the Navier-
Stokes-Fourier relations are the ‘R5 equations’ (i.e. a first-order perturbation of the 5-moment, or
Euler, equations), so the R13 equations require an additional 8 transport equations to be solved.

This process need not stop at 13 moments and can proceed to arbitrary order; the R20 equations
(which follow from a first-order perturbation of the complete 3™-order polynomial set) have been
recently derived for Maxwell-molecules and investigated by Mizzi and co-workers'®*. Space
limitations here preclude detailed description of the derivations of the R13 and R20 models, but
these can be found in the relevant literature just cited.

The lengthiness and complexity of the Grad, R13 and R20 governing equation sets, coupled with the
difficulty in ascribing much, if any, physical meaning to many of the higher-order moments involved
(which are sometimes described as ‘fluxes of fluxes’), has meant that progress in their analysis has
been slow, and take-up among non-equilibrium fluid dynamicists has been patchy. However, these
1213 Unlike their
Burnett counterparts, so at present they are the most promising of the extended hydrodynamic
models.

moment equations do generally display temporal and spatial stability for bulk flows

Specifying the additional boundary conditions required for these higher-moment equations remains,
however, a critical problem. In the case of the R20 model, most recently Mizzi'® has systematically
derived boundary conditions that describe the micro-processes in a Maxwell-type phenomenological
manner (see also section 2.3). In brief, the bounding wall is assumed non-porous so half-space
moments are considered, and the net flux of any moment should then be zero. By applying this
balance representation iteratively on all the moments considered, boundary conditions follow that
are appropriate for any of the Grad-type models'®*.
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We will now show some of the micro flow results that can be obtained using the R20 model with
these boundary conditions.

We have already mentioned Knudsen layer flows a couple of times in this paper; from a molecular
viewpoint, the Knudsen layer is the region close to a solid surface over which the discontinuity
introduced into the distribution function by gas/surface interactions (with a surface usually modelled
as a Maxwellian emitter) relaxes back to its bulk flow characteristic. This usually occurs over one or
two mean-free-paths. Figure 1 shows schematics and gives further (hydrodynamic) explanation of
both the momentum and thermal Knudsen layers that occur generally in flows. While Knudsen layers
exist close to surfaces in any gas flow, they only become important at the micro- and nano-scale; in
fact, for Kn>0.1 they dominate the flow behaviour. They represent a critical test case for extended
hydrodynamics because hydrodynamic models based on linear departures from local thermodynamic
equilibrium, such as the NSF equations, cannot capture the non-linear Knudsen layer behaviour.

Figure 2 shows the velocity profiles in Couette flow (i.e. a constant shear stress problem), for Kn=0.5,
calculated using various hydrodynamic models and compared with benchmark DSMC data®. All the
solutions capture quite well the amount of velocity slip at the solid walls, but the non-linear
behaviour seen in the molecular dynamics DSMC results close to the walls is more difficult to
reproduce. The R20 model with its new boundary conditions displays the best agreement with DSMC,
but it should be noted that any hydrodynamic model is likely to have difficulty in capturing the
flowfield at such a relatively high Kn.

Figure 3 shows the temperature profiles in a force-driven channel (Poiseuille) flow case, for Kn=0.1.
In a non-equilibrium channel-flow the temperature profile shows a distinct bimodality, which is
another good test for any new hydrodynamic model. In this case, again, the R20 model shows the
most promising agreement with DSMC (with a hard-sphere molecular model), although it should be
said that even this is not strong quantitatively. For interest, included in this figure are results of using
the R20 model but with a hard-sphere viscosity/temperature relationship.

Finally, figure 4 demonstrates an interesting phenomenon: reversed heat-fluxes*®*. In this case, a 2D
cavity has been simulated, with a driven-lid at the top of the cavity moving from left to right in the
figure at Mach 0.1; the flow Reynolds number is 1.5. All spatial dimensions have been normalised,
but the temperature is reported in degrees K. The R20 hydrodynamic model can capture qualitatively
the reversed heat-fluxes predicted by DSMC. This rarefaction behaviour is also reproducible in kinetic
theory solutions, but not in the NSF model. Such phenomena may be important in understanding
thermal load management and heat dissipation in MEMS and computer CPUs.

2.2 Boundary conditions

The problem of properly defining additional boundary conditions for extended hydrodynamics, as
outlined in the previous section, means that many micro- and nano-scale gas flow investigations are
still conducted within the conventional NSF framework. However, there are still issues surrounding
the correct implementation of non-equilibrium boundary conditions. To illustrate, we confine our
attention here to models for calculating the slip-velocity to be imposed on hydrodynamic simulations
at solid bounding surfaces, although calculation of the temperature-jump at surfaces also requires
careful consideration®.
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While there has been recent interest in using a Langmuir adsorption model of the gas/surface
interaction to retrieve rarefied flow boundary conditions®***, for flows of Kn>0.001 Maxwell’s
phenomenological expression” remains the most often-used expression for the tangential slip-
velocity, Uy,
uy, =-2"% g 2P0 D

ol 4
where 7 is the tangential shear stress and ¢ the tangential heat-flux at the surface, o the

(3)

momentum accommodation coefficient (ranging from 1 for surfaces that reflect all incident
molecules diffusely, to 0 for purely specular reflection), Pr is the gas Prandtl number, u the gas
viscosity, ythe specific heat ratio, and p the gas pressure.

Because equation (3) requires the viscous-stress and heat-flux, we can choose to use the NSF
constitutive expressions for these, as Maxwell himself did. For a flow bounded by planar surfaces
(and for a perfect gas), we then obtain the conventional equation for the magnitude of the slip-
velocity tangential to the surface, viz.
iy =220 2% 3 4 0T
o on 4 pl ox
where n is the coordinate normal to the surface and x the tangential coordinate, u, is the x-

(4)

component of the gas velocity, and pand T are the density and temperature, respectively, of the gas
at the wall.

While equation (4) has the advantage of simplicity, it should be remembered that it is incorrect for
simulations of gas flows over curved or rotationally-moving surfaces, such as serpentine bends,
spheres and cylinders, and other geometries in which the velocity normal to the surface varies in the
streamwise direction (such as deflecting flaps). In such cases, using equation (4) instead of equation
(3) misses out some important flow physics.

For example, figure 5 shows that the different boundary conditions produce radically different
predictions of cylindrical micro Couette flow”. In this figure it is the inner cylinder that is rotating, but
independent DSMC simulations show that the high gas velocities actually occur at the stationary
outer cylinder wall. This curious rarefaction phenomenon is only captured by hydrodynamic models if
the full Maxwell slip equation (3) is used, not the conventional slip equation (4). The no-slip fluid
dynamic solution and an independent analytical result are also shown on this figure, for comparison.
(Note that, for this flow system, differences in the results caused by using different boundary
condition models are accentuated by the artificially low momentum accommodation coefficient.)

The conventional slip-velocity expression (4) is 1°-order in flow property gradients, but 2™-order slip
conditions have been proposed to account for the effect of Knudsen layers. These conditions
compensate for the existence of a Knudsen layer through changing the magnitude of the slip-
velocity, but they do not model the Knudsen layer structure itself. A 2"-order formulation calculates
a different magnitude for the slip-velocity in an attempt to capture the increase in mass flowrates
observed at higher Kn, but it cannot alter the near-wall stress/strain-rate (constitutive) behaviour
which characterises the Knudsen layer. In the schematics of Knudsen layers in figure 1, 2"-order
boundary conditions model the “fictitious’ slip-velocity at the surface, while the linear NSF model is
generally retained for the flow away from the surface.
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The general form of these 2"%order conditions is, for planar surfaces,

0 o’
Uy, = A2 % — AP a—”x (5)

n?’

where we have also now assumed there is no heat flux along the surface. The values to be assigned
to the coefficients 4; and 4, are still the subject of much discussion, and are in any case likely to be
geometry-dependent. Table 1 gives a selection of some of the values in the literature, proposed
either from theoretical considerations or inferred from experimental observations. Note that a
proper comparison of different slip models and their coefficients requires consistency in the
expression used to determine A, and the values assigned to o (g.v. the discussion in section 3.2 of a
similar problem in comparing different lattice Boltzmann results).

While the form of equation (5) has been proposed because researchers wish to account for any
unevaluated 2™-order contributions to the slip-velocity, the original Maxwell slip condition (3) was
proposed from physical considerations. Inspection of this equation, and its original derivation®,
shows that there is no a priori restriction on the expressions for the stress or heat-flux that it
requires. While Maxwell used the NSF model, we are free to use another constitutive model;
Lockerby and co-workers* used the Burnett expression for the viscous-stress to derive a linearised
‘Maxwell-Burnett’ boundary condition, which is formally 2"-order in space and stable in its solution.
Expressing this new boundary condition in the form of equation (5) allows its coefficients 4; and 4,
to be included in Table 1; it can be seen from the table that these coefficients are generally in line
with many of the other coefficient values.

While the general problems with the Burnett equations outlined in section 2.1 still stand, the
justification for using them in this new 2"-order boundary condition is that they may at least be
better approximations than the NSF model for the non-equilibrium stress and heat-flux close to a
surface. In support of this, Lockerby and co-workers® showed that the new Maxwell-Burnett
boundary condition, applied with a conventional NSF hydrodynamic model for the bulk flow,
generates a thermal-stress slip flow (as distinct from a thermal creep flow) when there is a tangential
variation in the wall-normal temperature gradient. While this flow behaviour cannot be captured by
Maxwell’s boundary condition with an NSF model for the shear stress, its existence was first deduced
by Sone** from kinetic theory arguments.

The Maxwell-Burnett boundary condition has the advantage of relative simplicity because the
Burnett equations provide an explicit expression for the viscous-stress, but in principle an R13 or R20
constitutive model (see section 2.1) in equation (3) would also be possible and may be advantageous.

2.3 Near-wall constitutive scaling (‘ohenomenological extended hydrodynamics’)

The lengthy complexity of most extended hydrodynamics models, with their boundary conditions,
has led recently to a re-evaluation of modified versions of the NSF equations to be used as
‘engineering models’. This has followed from the observation that the NSF equations with slip
boundary conditions are a surprisingly reasonable, as well as computationally-efficient, model in
many cases. The modifications proposed are to incorporate some of the essential non-equilibrium
behaviour near solid surfaces. While some accuracy (relative to extended hydrodynamics proper) is
sacrificed in favour of ease of application, a major advantage of this approach to modelling non-
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equilibrium flows is that no additional boundary conditions beyond the slip/jump conditions outlined
in section 2.2 are required.

This approach has been termed ‘phenomenological extended hydrodynamics’ (PEH), and
incorporates a constitutive scaling of the NSF equations that depends on distance to the nearby solid
surface. The physical basis for this constitutive scaling can be traced to the work of Stops®*, who
demonstrated that the molecular mean-free-path of a gas is foreshortened (in comparison to its bulk
flow value) close to an immovable solid surface. As the mean-free-path can be directly related to the
viscosity and thermal conductivity of the gas, the fluid properties and behaviour of the gas some one
to two mean-free-paths from a surface (i.e. in the Knudsen layer) are therefore expected to be
different to those in the bulk flow.

Guo and co-workers*® developed a numerical solution method for Stops’ original expression for the
mean-free-path which, together with 2"-order slip boundary conditions, produced good predictions
for phenomena such as the Knudsen minimum in Poiseuille flow (see figure 6). Fichman and
Hetsroni®’, and Li and colleagues®, used independent mean-free-path arguments to propose that
both the viscosity and the thermal conductivity of the gas fall monotonically and uniformly to half
their bulk flow values across the region of a couple of mean-free-paths up to a surface. Analogous
work includes viscosity-modification models for thin-film lubrication flows by Sun and co-workers®,
and Schrag and Wachutka® (the latter building on a previous model by Veijola and others!).

Some of the most recent work in this field focuses on developing relatively simple analytical forms of
the mean-free-path variation close to surfaces, from which non-linear constitutive relations can be
straightforwardly derived. These modified NSF relations incorporate wall-distance scaling functions

122242438485 £or example, for isothermal cases this

derived from planar kinetic theoretical results
scaling acts to change the form of the 3D low-speed steady-state incompressible NSF momentum
equation to:

Vp=2uV-([®VU) = p®VU + 2V 0 -VU, (6)
where U is the gas flow velocity and VU =[ VU +(VU)"]/2 . The near-wall scaling function, @, in
this equation is given by

© =1+, (A)+ K¥,(A)] ", 7)

where 7 is the perpendicular distance (nondimensionalised with A) from the nearest wall surface™.

Lilley and Sader*®*’, drawing on Boltzmann theoretical solutions for hard-sphere molecules, propose
a power-law structure to the inner part of the momentum Knudsen layer, with the consequence that
the viscosity of the gas closest to the solid surface is effectively zero. The PEH model of Lockerby and
Reese™ adopts a similar power-law structure, viz. the test functions \P; in equation (7) are of the
form:
¥,(71) = a,i” expic}, (8)

and a; b; and c¢; are coefficients that are determined once by optimisation from benchmark kinetic
theory solutions to be:

a,=0.1859,  b=-0.4640, c;=—-0.7902; o)

a,=0.4205, b,=-0.3518, ¢,=-0.4521.
The flow-dependent variable, K, in equation (7) is in essence a form of local Knudsen number, and is
introduced to provide a 2"-order component to the constitutive scaling:
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== (10)

where the shear stress 7 =i, - (i, -IT), IT is the viscous stress tensor, i, a unit vector in the wall-
normal direction, and i, a unit vector perpendicular to i, in a direction that gives maximum 7. This

PEH model as a whole can indirectly (although will not necessarily) affect the shear stress field, which
in turn will alter K, producing a weak coupling effect.

PEH equations are generally easy to incorporate into current CFD codes and, despite their simplicity,
their solutions are often in excellent agreement with a range of planar gas flow data (including
Couette and Poiseuille flows). Perhaps surprisingly, given that the coefficients (9) for the test-
functions are derived from planar kinetic theory results, Lockerby and Reese’s model also shows
good agreement in non-planar gas flow problems, such as the flow around a micro-sphere (see figure
7). It even shows moderate success when applied to high-speed thermal rarefied gas flows, e.g. in
hypersonic aerothermodynamics®®, despite having mainly been derived for isothermal micro flows. In
the form of effective mean-free-path models, near-wall scaling is even being introduced into lattice
Boltzmann methods (see section 3.3). This seems to indicate a useful generality to the PEH technique
which is worth exploring in the future.

While PEH offers some exciting new possibilities, and shows an ability to capture some essential
features of non-equilibrium flows at the micro scale, it will never be as accurate — in terms of
recovering the detailed flow behaviour — as a rational extended hydrodynamics model based on the
fundamental physics. For example, the simple wall-distance scaling models described above do not
currently capture the bimodal temperature profile that is a prominent feature of force-driven
Poiseuille flow (as seen in figure 3). However, our view is that PEH fits into a hierarchy or ‘spectrum’
of simulation tools which the scientist or engineer can deploy on micro- or nano-flow problems,
depending on the accuracy required of the result and the time allowed to achieve it.

At one end of this ‘spectrum’ lie molecular techniques (such as DSMC), which produce very accurate
results but are at present computationally intractable for 3D flow systems. At the other end of the
spectrum lies the conventional NSF model, whose numerical solution in 3D for near-equilibrium
engineering problems is now commonplace. Extended hydrodynamics lies between these two limits,
with the moment equations of section 2.1 (with their inherent accuracy, but complexity and difficulty
in evaluation) lying towards the former limit, and the PEH of this section lying towards the latter
limit. Each method has its role and does not exclude any other, because each increases the choice of
tools we can bring to bear on a particular flow problem.

3. Lattice Boltzmann methods
3.1 Historical development

The lattice Boltzmann (LB) method is being increasingly used to simulate non-equilibrium flows,
especially gas flows, at the micro- and nano-scale. Historically, the LB method was mainly developed
493031 and it has been successfully applied to
modelling complex multiphysical flows, including interfacial dynamics, flows in porous media, and
suspensions.

as an alternative to solving the Navier-Stokes equations
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The underlying philosophy of the LB method is to design collision rules for computational particles
(representing ensembles of real molecules) so that conservation laws for mass and momentum can
be achieved. It developed out of lattice gas automata (LGA), which are discrete particle kinetic
methods. LGA are designed to conserve mass and momentum by choosing collision laws, but another
requirement is to have sufficient symmetry of the lattice in order to recover the Navier-Stokes
equations®. Since macroscopic fluid dynamics is generally not sensitive to the details of
intermolecular interactions, LGA are able to recover the correct Navier-Stokes behaviour.

In the LGA method, the particle occupation on numerical lattices can be described by a set of
Boolean variables n,(x, ), i=0, 1...N, where N is the number of discrete velocities at each lattice node.
The evolution equation for the LGA method is then very simple:
n(x+e,t+1)=n(x1)+Q, (11)

where e; is the discrete velocity and Q;is the collision operator. The numerical procedure comprises
two steps: streaming and collision. In the streaming step, every particle moves to the nearest node
according to its discrete velocity. If two or more particles arrive at the same node, they collide and
scatter according to a designated rule. Particle collisions do not obey Newton’s Law microscopically,
but a simple collision rule ensuring mass and momentum conservation.

Although it can recover Navier-Stokes behaviour in the continuum limit, the LGA model suffers from
many drawbacks, including fluctuations in macroscopic properties and lack of Galilean invariance.
Due to Boolean occupation, statistical noise is large so that an averaging process is required, which is
computationally costly. To cure these shortcomings, McNamara and Zanetti>® proposed introducing a
single particle distribution function to replace Boolean occupation, viz. f=<n>. This idea was
borrowed from the kinetic theory of gases, so that individual particle motion is absorbed in the
distribution function, and the kinetic equation is then used to describe evolution of the particle
distribution function. In this way, the fluctuations in macroscopic properties associated with the LGA
method can be smoothed out. Note that although this idea was borrowed from the kinetic theory of
gases, no formal theoretical link to this theory was established.

In the LB method, the evolution equation for the distribution function becomes:

filx+e Axt+At)= f(x1)+Q,, (12)
where Ax is the lattice length and At is the time step. Macroscopic properties such as density and
velocity can then be obtained through:

p:Zfi, pMZZf;-ei. (13)

When designing the collision operator, conservation of total mass and momentum needs to be
satisfied. Therefore, the collision operator has to meet the following requirements:

Z.Qi = 0, ZQiei = O, (14)
and the simplest choice for a suitable collision operator is the BGK model****°:
_ £
Q- _% , (15)

c

where £, is the particle distribution function at equilibrium, and ¢, is the particle relaxation time.

Qian and colleagues™ provided a series of lattice models which they dubbed DnQm (with n the
dimension and m the number of discrete velocities) with sufficient symmetry so that the lattice BGK
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method (outlined above) can recover the Navier-Stokes equations. Popular methods are D2Qg9,
D3Q15 and D3Q19; for example, the discrete velocities in a D2Q9 lattice method are:

e, =<|cos in ; sin(in c i=1357, (16)
2 2
i—1 i—1 T

The equilibrium particle distribution function is

[ = po, 1+3e,.-u+2(ei-u)2 —Eu2 ,
2 2
1

4 1 1)
with o, =—; o, =—, i=1357 o, =—,1=2468.
9 9 36

1 1

These LB equations, and the ones that follow below, are generally expressed in lattice units, with
c=1.

With the lattice BGK (LBGK) method, and the standardisation of the lattice models, the LB method
started rapidly developing, and has now found application in complex fluid simulations, e.g. driven
cavity flows®’, turbulent flow®®, and multiphase flows>***®,

3.2 LB simulation of non-equilibrium flows

The theoretical link between the LB method and the Boltzmann equation itself was established by He
and Luo®, and Abe®. This has led many researchers to investigate whether the LB method can be
applied to rarefied gas dynamics, particularly because the LB boundary condition at solid surfaces
only needs to provide the reflected particle distribution — it does not need to specify any
macroscopic properties in the wall region. This is, as we have observed above, an important
advantage over extended hydrodynamic models which struggle to find appropriate boundary
conditions for macroscopic variables and their gradients.

Although there is no theoretical proof that current models, such as LBGK, can capture high-order
rarefaction effects, many researchers have been exploring the capability of LB methods numerically.
One of the major hurdles in applying LB to non-equilibrium flow is imposing appropriate wall
boundary conditions. Nie and co-workers®* used the LBGK method to simulate non-equilibrium gas
flow using the ‘bounce-back’ wall boundary condition (in which particles colliding with the wall are
reflected in the opposite direction). However, the bounce-back scheme is usually used for flows with
no-slip-velocity at walls. Lim and colleagues®™ used a combination of specular and bounce-back
schemes to successfully capture some non-equilibrium effects, including velocity-slip at surfaces and
the non-linear pressure gradient along a 2D channel.

Many other wall boundary conditions have also been proposed, including the virtual-wall collision
scheme, described by Toschi and Succi®® as “a stochastic relaxation mechanism mimicking ‘virtual’
collisions between free-streaming particles and solid walls”. Zhang and colleagues®’ proposed a
scheme that can incorporate the ubiquitous tangential accommodation coefficient; their argument
was that the LB discrete velocity set is very limited, so the averaged reflection direction for a diffuse

11
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reflection should be normal to the surface. A tangential accommodation coefficient can then be used
to characterize the reflection, which is usually between the diffuse and specular limits. Their
simulation results were satisfactory in the slip flow regime and, surprisingly, the model also captures
the ‘Knudsen minimum’ phenomenon.

However, probably the most significant slip-velocity model is the kinetic boundary condition
proposed by Ansumali and Karlin®®, based on the early work of Gatignol®®. In this, the Maxwellian
gas/surface interaction model is formulated in the discrete velocity scheme. Niu and co-workers”
proposed a similar kinetic boundary condition, and Tang and co-workers’* developed it further by
incorporating an accommodation coefficient.

The standard LBGK method is a 2"-order model (i.e. it retains 2"-order terms in the expansion of the
distribution function in Hermite polynomials), and has been successfully applied to simulate slip
flows. But some researchers have claimed that the capabilities of LBGK reach beyond the slip flow
regime’?; while 2"-order LB methods can capture some high-order non-equilibrium phenomena,
such as the tangential heat flux in an isothermal flow, they cannot capture the Knudsen layer flow
which, as we outlined above, can often form a relatively large proportion of the flow domain’?.

Since the Knudsen number is the usual indicator of non-equilibrium in gas flows, LB simulation results
should be interpreted by Kn as well. However, Kn depends on how the molecular mean-free-path is
calculated, which differs among models. This has caused some confusion in the LB literature. When
comparing results between different methods, it is important to ensure the same definition of Kn is
used; often a scaling coefficient has to be taken into account when considering results from different
models®’.

3.3 Non-equilibrium LB methods

Qian and Zhou” attempted to prove that high-order hydrodynamics does exist in lattice-based
models. However, sufficient symmetry for high-order moments cannot be achieved using available
models. Since the standard LBGK method still behaves the same, more or less, as the Navier-Stokes
equations, developing high-order LB methods for non-equilibrium flow has attracted significant
recent interest.

Shan and colleagues’ proposed using the Hermite expansion to construct high-order LB models in
which high-order moments, important for non-equilibrium gas flow, can be explicitly determined.
Ansumali and co-workers’ demonstrated that, while such methods do improve the LB method’s
capabilities, the nonlinear constitutive relationship between stress and strain-rate in the Knudsen
layer is still not well predicted. Figures 8 and 9 show a benchmark comparison of these proposed
models with kinetic theory and DSMC data’.

Szalmas’’ recently proposed a modification to implement the effect of high-order moments through
a fast relaxation mode, which recalls the split of fast and slow moments proposed by Gorban and
Karlin”®. This method essentially uses two different relaxation times for low-order and high-order
moments, and has been shown to capture Knudsen layer flow behaviour with an adjustable Knudsen
layer thickness. In the same spirit as the regularized moment models outlined in section 2.1, Zhang
and co-workers”, and Niu and co-workers® added an additional term to their LB methods to
account for omitted high-order moment effects. Although all these modifications have been shown

12



published in Journal of Computational and Theoretical Nanoscience, Vol. 6,2061-2074 (2009)

to capture qualitatively the velocity profile in the Knudsen layer of a planar Couette flow, they are at
an early stage and a quantitatively-accurate high-order LB method is still needed.

As we discussed in section 2.3, the proximity of a solid wall affects the free flight of gas molecules; in
the Knudsen layer, gas molecules are more likely to collide with the wall rather than another gas
molecule. The collisions between gas molecules and the wall will lead to an effective reduction of the
mean-free-path of the gas, which should be taken into account in LB simulations. Implementation of
this wall-effect in LB models can be found in the papers by Zhang and colleagues®®, and Tang and

colleagues’, where the formula proposed by Lockerby and co-workers* was used.

On implementing this local mean-free-path modification, the standard LBGK method is able to
capture the Knudsen layer very well, as shown in figure 10.2* However, for a pressure-driven flow, as
shown in figure 11, the discrepancy with kinetic theory predictions is still large, possibly because this
modification may not be able to capture the high-order non-equilibrium effects caused by a pressure
gradient.®

Conversely, high-order LB methods fail to capture Knudsen layer characteristics in a Couette flow
where no pressure gradient is present, but they have been shown to improve the prediction of
pressure-driven flows’®. Because the roots of the 4" order Hermite polynomials are irrational, the
discrete velocities cannot match lattice nodes. So additional effort, such as point-wise
interpolation®, is therefore required and this dramatically increases the computational cost (because
it then essentially becomes an off-lattice discrete velocity method for solving the kinetic Boltzmann
equation). Worse still, these high-order LB methods with large numbers of discrete velocities are not
numerically stable®. Chikatamarla and Karlin® proposed a rational number approximation concept
to avoid point-wise interpolation, and in a similar spirit a simplified high-order LB method has been
proposed by Tang and colleagues’. In the latter case, for example, the 2D model is given by:

feq=pw-(1+ei.2u+(ei'”)2 _”'"Jr(ei'u)3 3e-u’ ]

: 2¢! 2¢! 2¢° 2¢!
S N N s N (18)
wozé; wi:L,i:1—4; a)l.zL,i:5—8; a)l.zL,i=9—12,
8 12 16 96
where ¢, =+/RT . The lattice velocities are:
e, =0,
e, =|cos (z—l)n . sin (z—l)n c i=1-4,
i 2 2
(-5 z\ . ((i-5m 7[) ) (19)
e =|cosl ——+—|, sin| ———+— \/Z i=5-8,
L ( 2 4) ( 2 4
e = cos( ( _21)ﬂ), sin( ( _Zl)ﬂj}c, i=9-12,

where ¢ =2RT .

With the local mean-free-path modification also implemented, figures 10 and 11 show the method of
Tang and colleagues’ not only captures the nonlinear constitutive behaviour of the stress and heat-
flux but also the high-order rarefaction effect in pressure-driven flows. Considering the influence of
bounding surfaces on the local mean-free-path seems to be essential if the Knudsen layer flow is to
be captured, as shown for the planar Couette case where no pressure gradient is present. In the
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pressure-driven flow, even with the wall effect incorporated, D2Q13 performs much better than
D2Q9. This indicates that a high-order model is likely to have improved predictive capabilities for
high-order rarefaction effects due to external forces, although capturing Knudsen layer effects still
depends on a local mean-free-path modification.

For realistic non-equilibrium flows, Knudsen layer interference (or ‘overlap’) also has to be
considered. A simple summative model has been used for flows between two parallel plates®"**”3,
but this is difficult to extend to more complex geometries. The modified mean-free-path approach of
Guo and co-workers®, mentioned in section 2.3 in connection with hydrodynamic models, has

therefore now been implemented in the LB method®®.

In order to capture physics beyond the NSF equations for non-equilibrium thermal flows, 5"-order
velocity terms in the Hermite expansion to the equilibrium distribution function should be retained.
This leads to a large number of discrete velocities. A non-equilibrium thermal model has been
proposed by Zhang and co-workers®* to separate the different relaxation rates for momentum and
energy by adopting a different distribution function for the energy density — as used by He and co-
workers® for no-velocity-slip and no-temperature-jump hydrodynamics — to describe the evolution
of the energy. Only up to 3"-order moments for the energy density equilibrium distribution function
are then sufficient to describe the heat-flux beyond the NSF level. With, again, modification of the
local mean-free-path in the wall region, the method can capture the velocity-slip and temperature-
jump at the wall, in addition to the Knudsen layer flow characteristics.

4, Conclusions

Recent years have seen resurging international interest in methods for simulating rarefied and other
non-equilibrium flows. This interest has been stimulated by the need for effective design tools for
micro- and nano-scale systems, coupled with a growing appreciation that the fluid dynamics of these
small-scale systems is often crucially different to that at the macro-scale.

Any review of this diverse field needs to be selective, and can provide only a snapshot of the

techniques being explored. In this short article we have attempted to pick out some of the most

important and exciting recent developments, and point to a few of the interesting links between

them. We therefore conclude with some observations concerning the methods and models we have

reviewed:

¢ Considering the hydrodynamic framework, the models now being pursued range from accurate
but complex R13 and R20 moment models, to elegantly simple ‘engineering models’ of near-wall
constitutive scaling (PEH). Each model strikes a different balance between simulation accuracy
and computability, and choosing which one to use depends on the flow situation under
investigation and the modelling requirements.

¢ Wall boundary conditions for extended hydrodynamic models are becoming increasingly well-
understood, with new conditions now emerging that describe the micro-processes at the surface
more realistically and which can capture non-equilibrium near-surface phenomena such as
Knudsen layers.

¢ Translating the novel concept of near-wall constitutive scaling (in the form of ‘effective mean-
free-path’ models) from hydrodynamics across to lattice Boltzmann methods is showing a
surprising ability to predict some important rarefaction behaviour. Without this modification,
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however, high-order LB methods still fail to predict Knudsen layer flows, even if the prediction of
rarefaction effects caused by external forces is improved.

Simplified high-order LB methods incorporating near-wall scaling of the gas molecular mean-free-
path offer a great deal of promise as simulation tools, with both computational efficiency and
numerical accuracy, for a wide range of non-equilibrium flows in micro- and nano-scale systems.
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Reference Study Gas molecule A, A
monatomic
Maxwell (1879)% theoretical . . 1.0 0.0
& diatomic
Schamberg (1947)% theoretical monatomic | 1.0 1.31
Cercignani (1969)* theoretical monatomic | 1.15 0.98
. )8 , monatomic
Deissler (1964) theoretical ) . 1.0 1.13
& diatomic
Sreekanth (1969)* experimental’ Nitrogen 1.15 0.14
monatomic
Hsia & Domoto (1983)30 theoretical ) . 1.0 0.5
& diatomic
monatomic
Karniadakis et al. (2005)2 theoretical ) . 1.0 -0.5
& diatomic
Hadjiconstantinou (2003)*! | theoretical monatomic | 1.11 0.61
32 . Nitrogen 1.3+0.05 | 0.2640.1
Maurer et al. (2003) experimental .
Helium 1.2+0.05 | 0.23+0.1
Ewart et al. (2006)* experimental* Nitrogen 1.32+0.1 | 0.32+0.08
4 . monatomic | 1.0 0.19
Maxwell-Burnett (2004) theoretical ] )
diatomic 1.0 0.145

" Data for cylindrical Poiseuille flow.

Table 1. List of proposed 1%- and 2"-order coefficients, 4; and A4, respectively, in the slip-velocity
condition, equation (5); reported in the literature for a diffuse solid boundary. For comparison
purposes, all values have been re-normalised to a common mean-free-path definition:

A= u~7/2 pp , where w is the gas viscosity, p the pressure, and p the density.
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No-slip N-S profile No-jump N-S-F profile
- - --  Fictitious slip N-S profile --=- Fictitious jump N-S-F profile

True strain-rate profile —_— I'rue temperature profile

Tf.u'! T_,llunp Tu'uH

Figure 1. Schematics of the momentum and thermal Knudsen layers in Kramers’ problem (left) and
the temperature-jump problem (right), respectively. Kramers’ flow is the incompressible, isothermal
flow of a gas in a half-space under a constant shear stress applied tangentially to a stationary planar
wall. The temperature-jump problem is a constant heat flux in a quiescent gas in a half-space, applied
normally to a planar wall. Both problems produce linear velocity or temperature gradients,
respectively, except in the Knudsen layers extending some 24 from the wall. Subscripts refer to: wall,
values of the solid wall velocity/temperature; slip/jump, actual values of the gas slip-velocity and
temperature-jump due to incomplete accommodation with the surface; fict, the ‘fictitious’ values of
slip and jump that need to be imposed if the linear Navier-Stokes model is required to be accurate in
the bulk flow beyond the Knudsen layer (but not within it).
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Figure 2. Planar Couette flow (Kn=0.5, argon gas), cross-channel dimensional velocity profiles,
comparing the NSF slip solution to the R13 and R20 moment models and benchmark DSMC data. The
channel surfaces are at x,=0 m (stationary wall) and x,=0.024 m (moving wall). Note that the NSF
model is unable to capture the non-linear behaviour extending throughout the flow-field. The R13
model is excessively non-linear close to the wall (see insert magnification of near-wall solutions), but
recovers most of the bulk flow behaviour. In this case, the R20 model manages to reproduce quite
well both the non-linear behaviour close to the wall (the Knudsen layer), and the bulk flow.
(Reprinted with permission from S Mizzi, Extended macroscopic models for rarefied gas dynamics in
micro-sized domains, PhD thesis, University of Strathclyde, UK, 2008.)
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Figure 3. Force-driven planar Poiseuille flow (Kn=0.1), cross-channel temperature profiles, comparing
various extended hydrodynamic solutions with benchmark DSMC (hard-sphere molecule) results. The
bimodality of the temperature profile — not captured in any way by the conventional NSF model —
is qualitatively predicted by both the R13 and R20 models. Note that, although the collisional
production term in the derivation of the R20 equations is for Maxwell-molecules only, using the R20
model together with a hard-sphere viscosity/temperature law can affect the results. (Reprinted with
permission from S Mizzi, Extended macroscopic models for rarefied gas dynamics in micro-sized
domains, PhD thesis, University of Strathclyde, UK, 2008.)

23



published in Journal of Computational and Theoretical Nanoscience, Vol. 6,2061-2074 (2009)

275
274
274
273
273
272
272
271

0 0.2 0.4 0.6 0.8 1
X

Figure 4. Lid-driven cavity flow in 2D (Kn=0.1, argon gas), heat flux stream-traces superimposed on a
filled-contour plot of temperature (indicated, in degrees K); (top) results from a DSMC simulation,
(bottom) results from the R20 model. Note the reversed heat-fluxes, i.e. in both solutions heat
energy ‘flows’ from cold to hot regions. There is generally good agreement between the DSMC data
and the R20 model results. (Reprinted with permission from S Mizzi, Extended macroscopic models
for rarefied gas dynamics in micro-sized domains, PhD thesis, University of Strathclyde, UK, 2008.)
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Figure 5. Cylindrical Couette flow (Kn=0.5, argon gas), non-dimensional velocity radial profiles,
comparing hydrodynamic solutions calculated using various slip-velocity models with benchmark

DSMC data. The inner wall (at »/A=0) is rotating with a tangential velocity approximately a third the
speed of sound relative to the outer wall (at »/A=2), the momentum accommodation coefficient is
0.1. Note the inverted velocity profile, captured by DSMC and an analytical kinetic theory but not by
a hydrodynamic model (in this case, the NSF equations) unless the Maxwell original slip equation? is
implemented properly in this curved geometry. (Reprinted from DA Lockerby, JM Reese, DR
Emerson, RW Barber (2004) Velocity boundary condition at solid walls in rarefied gas calculations.
Phys. Rev. E, 70:017303.)
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O Experiment
— Model of Guo et al

====: Boltzmann

non-dimensional mass flux

01.01 0.1 1 10

inverse Knudsen number
Figure 6. Planar Poiseuille flow at various (inverse) Kn, non-dimensional mass flux, comparing
predictions using the model of Guo and colleagues*® (with 2"-order slip boundary conditions) with a
solution of the Boltzmann equation and experimental data. While there is still some quantitative
inexactness, the ‘Knudsen minimum’ (or ‘Knudsen paradox’) in the mass flux is clearly captured by
the near-wall constitutive scaling model. (Reprinted with permission from ZL Guo, BC Shi, CG Zheng
(2007) An extended Navier-Stokes formulation for gas flows in the Knudsen layer near a wall. EPL,
80:24001.)
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Figure 7. Flow around a sphere at various Kn, normalized drag force, comparing predictions using the
near-wall constitutive scaling model of Lockerby and Reese (— —) with Basset’s classical slip solution
(— - - =), Cercignani’s 2"-order slip solution (- - -), BGK kinetic theory results (o), and experimental
data (—). (Reprinted with permission from DA Lockerby, JM Reese (2008) On the modelling of
isothermal gas flows at the microscale. J. Fluid Mech., 604:235-261.)
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Figure 8. Planar Couette flow at various Kn, cross-half-channel velocity profiles (nondimensionalised
with the moving-surface speed of u,), comparing analytical results from a high-order LB method’®
with a solution of the linearised Boltzmann equation by Y Sone, S Takata, T Ohwada, Eur. J. Mech. B-
Fluids, 9:273 (1990). (Reproduced from GH Tang, YH Zhang, DR Emerson (2008) Lattice Boltzmann
models for nonequilibrium gas flows. Phys. Rev. E, 77:046701.)
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Figure 9. Planar Couette flow at various Kn, cross-half-channel velocity profiles (nondimensionalised
with the moving-surface speed of u,), comparing analytical results from a high-order LB method’®
with benchmark DSMC data. (Reproduced from GH Tang, YH Zhang, DR Emerson (2008) Lattice
Boltzmann models for nonequilibrium gas flows. Phys. Rev. E, 77:046701.)
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Figure 10. Planar Couette flow (Kn=0.25, 1.0), cross-half-channel velocity profiles
(nondimensionalised with the moving-surface speed of u,,), comparing D2Q9 and D2Q13 LB methods
(including local mean-free-path modification, here labelled ‘wall-function’) with benchmark DSMC
data. (Reproduced from GH Tang, YH Zhang, DR Emerson (2008) Lattice Boltzmann models for
nonequilibrium gas flows. Phys. Rev. E, 77:046701.)
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Figure 11. Planar Poiseuille flow (Kn=0.2257, 0.9027), cross-channel velocity profiles
(nondimensionalised with the average flow speed of u,,), comparing D2Q9 and D2Q13 LB methods
(including local mean-free-path modification) with a solution of the linearised Boltzmann equation by
T Ohwada, Y Sone, K Aoki, Phys. Fluids A, 1:1588 (1989). (Reproduced from GH Tang, YH Zhang, DR
Emerson (2008) Lattice Boltzmann models for nonequilibrium gas flows. Phys. Rev. E, 77:046701.)
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