8,699 research outputs found

    Model-free Representation Learning and Exploration in Low-rank MDPs

    Full text link
    The low rank MDP has emerged as an important model for studying representation learning and exploration in reinforcement learning. With a known representation, several model-free exploration strategies exist. In contrast, all algorithms for the unknown representation setting are model-based, thereby requiring the ability to model the full dynamics. In this work, we present the first model-free representation learning algorithms for low rank MDPs. The key algorithmic contribution is a new minimax representation learning objective, for which we provide variants with differing tradeoffs in their statistical and computational properties. We interleave this representation learning step with an exploration strategy to cover the state space in a reward-free manner. The resulting algorithms are provably sample efficient and can accommodate general function approximation to scale to complex environments

    On statistics, computation and scalability

    Full text link
    How should statistical procedures be designed so as to be scalable computationally to the massive datasets that are increasingly the norm? When coupled with the requirement that an answer to an inferential question be delivered within a certain time budget, this question has significant repercussions for the field of statistics. With the goal of identifying "time-data tradeoffs," we investigate some of the statistical consequences of computational perspectives on scability, in particular divide-and-conquer methodology and hierarchies of convex relaxations.Comment: Published in at http://dx.doi.org/10.3150/12-BEJSP17 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Sharp Time--Data Tradeoffs for Linear Inverse Problems

    Full text link
    In this paper we characterize sharp time-data tradeoffs for optimization problems used for solving linear inverse problems. We focus on the minimization of a least-squares objective subject to a constraint defined as the sub-level set of a penalty function. We present a unified convergence analysis of the gradient projection algorithm applied to such problems. We sharply characterize the convergence rate associated with a wide variety of random measurement ensembles in terms of the number of measurements and structural complexity of the signal with respect to the chosen penalty function. The results apply to both convex and nonconvex constraints, demonstrating that a linear convergence rate is attainable even though the least squares objective is not strongly convex in these settings. When specialized to Gaussian measurements our results show that such linear convergence occurs when the number of measurements is merely 4 times the minimal number required to recover the desired signal at all (a.k.a. the phase transition). We also achieve a slower but geometric rate of convergence precisely above the phase transition point. Extensive numerical results suggest that the derived rates exactly match the empirical performance

    High-performance Kernel Machines with Implicit Distributed Optimization and Randomization

    Full text link
    In order to fully utilize "big data", it is often required to use "big models". Such models tend to grow with the complexity and size of the training data, and do not make strong parametric assumptions upfront on the nature of the underlying statistical dependencies. Kernel methods fit this need well, as they constitute a versatile and principled statistical methodology for solving a wide range of non-parametric modelling problems. However, their high computational costs (in storage and time) pose a significant barrier to their widespread adoption in big data applications. We propose an algorithmic framework and high-performance implementation for massive-scale training of kernel-based statistical models, based on combining two key technical ingredients: (i) distributed general purpose convex optimization, and (ii) the use of randomization to improve the scalability of kernel methods. Our approach is based on a block-splitting variant of the Alternating Directions Method of Multipliers, carefully reconfigured to handle very large random feature matrices, while exploiting hybrid parallelism typically found in modern clusters of multicore machines. Our implementation supports a variety of statistical learning tasks by enabling several loss functions, regularization schemes, kernels, and layers of randomized approximations for both dense and sparse datasets, in a highly extensible framework. We evaluate the ability of our framework to learn models on data from applications, and provide a comparison against existing sequential and parallel libraries.Comment: Work presented at MMDS 2014 (June 2014) and JSM 201

    More data speeds up training time in learning halfspaces over sparse vectors

    Full text link
    The increased availability of data in recent years has led several authors to ask whether it is possible to use data as a {\em computational} resource. That is, if more data is available, beyond the sample complexity limit, is it possible to use the extra examples to speed up the computation time required to perform the learning task? We give the first positive answer to this question for a {\em natural supervised learning problem} --- we consider agnostic PAC learning of halfspaces over 33-sparse vectors in {−1,1,0}n\{-1,1,0\}^n. This class is inefficiently learnable using O(n/ϵ2)O\left(n/\epsilon^2\right) examples. Our main contribution is a novel, non-cryptographic, methodology for establishing computational-statistical gaps, which allows us to show that, under a widely believed assumption that refuting random 3CNF\mathrm{3CNF} formulas is hard, it is impossible to efficiently learn this class using only O(n/ϵ2)O\left(n/\epsilon^2\right) examples. We further show that under stronger hardness assumptions, even O(n1.499/ϵ2)O\left(n^{1.499}/\epsilon^2\right) examples do not suffice. On the other hand, we show a new algorithm that learns this class efficiently using Ω~(n2/ϵ2)\tilde{\Omega}\left(n^2/\epsilon^2\right) examples. This formally establishes the tradeoff between sample and computational complexity for a natural supervised learning problem.Comment: 13 page
    • …
    corecore