7,676 research outputs found

    Multi-stage Multi-recursive-input Fully Convolutional Networks for Neuronal Boundary Detection

    Get PDF
    In the field of connectomics, neuroscientists seek to identify cortical connectivity comprehensively. Neuronal boundary detection from the Electron Microscopy (EM) images is often done to assist the automatic reconstruction of neuronal circuit. But the segmentation of EM images is a challenging problem, as it requires the detector to be able to detect both filament-like thin and blob-like thick membrane, while suppressing the ambiguous intracellular structure. In this paper, we propose multi-stage multi-recursive-input fully convolutional networks to address this problem. The multiple recursive inputs for one stage, i.e., the multiple side outputs with different receptive field sizes learned from the lower stage, provide multi-scale contextual boundary information for the consecutive learning. This design is biologically-plausible, as it likes a human visual system to compare different possible segmentation solutions to address the ambiguous boundary issue. Our multi-stage networks are trained end-to-end. It achieves promising results on two public available EM segmentation datasets, the mouse piriform cortex dataset and the ISBI 2012 EM dataset.Comment: Accepted by ICCV201

    Colour Constancy: Biologically-inspired Contrast Variant Pooling Mechanism

    Get PDF
    Pooling is a ubiquitous operation in image processing algorithms that allows for higher-level processes to collect relevant low-level features from a region of interest. Currently, max-pooling is one of the most commonly used operators in the computational literature. However, it can lack robustness to outliers due to the fact that it relies merely on the peak of a function. Pooling mechanisms are also present in the primate visual cortex where neurons of higher cortical areas pool signals from lower ones. The receptive fields of these neurons have been shown to vary according to the contrast by aggregating signals over a larger region in the presence of low contrast stimuli. We hypothesise that this contrast-variant-pooling mechanism can address some of the shortcomings of max-pooling. We modelled this contrast variation through a histogram clipping in which the percentage of pooled signal is inversely proportional to the local contrast of an image. We tested our hypothesis by applying it to the phenomenon of colour constancy where a number of popular algorithms utilise a max-pooling step (e.g. White-Patch, Grey-Edge and Double-Opponency). For each of these methods, we investigated the consequences of replacing their original max-pooling by the proposed contrast-variant-pooling. Our experiments on three colour constancy benchmark datasets suggest that previous results can significantly improve by adopting a contrast-variant-pooling mechanism

    Recursive Training of 2D-3D Convolutional Networks for Neuronal Boundary Detection

    Full text link
    Efforts to automate the reconstruction of neural circuits from 3D electron microscopic (EM) brain images are critical for the field of connectomics. An important computation for reconstruction is the detection of neuronal boundaries. Images acquired by serial section EM, a leading 3D EM technique, are highly anisotropic, with inferior quality along the third dimension. For such images, the 2D max-pooling convolutional network has set the standard for performance at boundary detection. Here we achieve a substantial gain in accuracy through three innovations. Following the trend towards deeper networks for object recognition, we use a much deeper network than previously employed for boundary detection. Second, we incorporate 3D as well as 2D filters, to enable computations that use 3D context. Finally, we adopt a recursively trained architecture in which a first network generates a preliminary boundary map that is provided as input along with the original image to a second network that generates a final boundary map. Backpropagation training is accelerated by ZNN, a new implementation of 3D convolutional networks that uses multicore CPU parallelism for speed. Our hybrid 2D-3D architecture could be more generally applicable to other types of anisotropic 3D images, including video, and our recursive framework for any image labeling problem

    Rapid Visual Categorization is not Guided by Early Salience-Based Selection

    Full text link
    The current dominant visual processing paradigm in both human and machine research is the feedforward, layered hierarchy of neural-like processing elements. Within this paradigm, visual saliency is seen by many to have a specific role, namely that of early selection. Early selection is thought to enable very fast visual performance by limiting processing to only the most salient candidate portions of an image. This strategy has led to a plethora of saliency algorithms that have indeed improved processing time efficiency in machine algorithms, which in turn have strengthened the suggestion that human vision also employs a similar early selection strategy. However, at least one set of critical tests of this idea has never been performed with respect to the role of early selection in human vision. How would the best of the current saliency models perform on the stimuli used by experimentalists who first provided evidence for this visual processing paradigm? Would the algorithms really provide correct candidate sub-images to enable fast categorization on those same images? Do humans really need this early selection for their impressive performance? Here, we report on a new series of tests of these questions whose results suggest that it is quite unlikely that such an early selection process has any role in human rapid visual categorization.Comment: 22 pages, 9 figure
    • …
    corecore