15 research outputs found

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Quality of Service Abstractions for Software-defined Networks

    Get PDF
    ABSTRACT Software-defined networking (SDN) provides a means of configuring the packet-forwarding behavior of a network from a logically-centralized controller. Expressive, high-level languages have emerged for expressing data-plane configurations, and new tools allow for verifying packet reachability properties in real time. But SDN largely ignores quality of service (QoS) primitives, such as queues, queuing disciplines, and rate limiters, leaving configuration of these elements to be performed out of band in an ad-hoc manner. Not only does this make QoS elements difficult to configure, it also leads to a "try it and see" approach to analysis and verification of QoS properties. We propose a new language for configuring SDNs with quality of service primitives. Our language comes equipped with a well-defined semantics drawn from the network calculus, which we believe will yield an equational theory for reasoning about network quality of service as well as decision procedures for verifying QoS properties

    Unifying Static And Runtime Analysis In Declarative Distributed Systems

    Get PDF
    Today’s distributed systems are becoming increasingly complex, due to the ever-growing number of network devices and their variety. The complexity makes it hard for system administrators to correctly configure distributed systems. This motivates the need for effective analytic tools that can help ensure correctness of distributed systems. One challenge in ensuring correctness is that there does not exist one solution that works for all properties. One type of properties, such as security properties, are so critical that they demand pre-deployment verification (i.e., static analysis) which, though time-consuming, explores the whole execution space. However, due to the potential problem of state explosion, static verification of all properties is not practical, and not necessary. Violation of non-critical properties, such as correct routing with shortest paths, is tolerable during execution and can be diagnosed after errors occur (i.e., runtime analysis), a more light-weight approach compared to verification. This dissertation presents STRANDS, a declarative framework that enables users to perform both pre-deployment verification and post-deployment diagnostics on top of declarative specification of distributed systems. STRANDS uses Network Datalog (NDlog), a distributed variant of Datalog query language, to specify network protocols and services. STRANDS has two components: a system verifier and a system debugger. The verifier allows the user to rigorously prove safety properties of network protocols and services, using either the program logic or symbolic execution we develop for NDlog programs. The debugger, on the other hand, facilitates diagnosis of system errors by allowing for querying of the structured history of network execution (i.e., network provenance) that is maintained in a storage-efficient manner. We show the effectiveness of STRANDS by evaluating both the verifier and the debugger. Using the verifier, we prove path authenticity of secure routing protocols, and verify a number of safety properties in software-defined networking (SDN). Also, we demonstrate that our provenance maintenance algorithm achieves significant storage reduction, while incurring negligible network overhead

    From Network Interface to Multithreaded Web Applications: A Case Study in Modular Program Verification

    Get PDF
    Many verifications of realistic software systems are monolithic, in the sense that they define single global invariants over complete system state. More modular proof techniques promise to support reuse of component proofs and even reduce the effort required to verify one concrete system, just as modularity simplifies standard software development. This paper reports on one case study applying modular proof techniques in the Coq proof assistant. To our knowledge, it is the first modular verification certifying a system that combines infrastructure with an application of interest to end users. We assume a nonblocking API for managing TCP networking streams, and on top of that we work our way up to certifying multithreaded, database-backed Web applications. Key verified components include a cooperative threading library and an implementation of a domain-specific language for XML processing. We have deployed our case-study system on mobile robots, where it interfaces with off-the-shelf components for sensing, actuation, and control.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293

    From Network Interface to Multithreaded Web Applications: A Case Study in Modular Program Verification

    Get PDF
    Many verifications of realistic software systems are monolithic, in the sense that they define single global invariants over complete system state. More modular proof techniques promise to support reuse of component proofs and even reduce the effort required to verify one concrete system, just as modularity simplifies standard software development. This paper reports on one case study applying modular proof techniques in the Coq proof assistant. To our knowledge, it is the first modular verification certifying a system that combines infrastructure with an application of interest to end users. We assume a nonblocking API for managing TCP networking streams, and on top of that we work our way up to certifying multithreaded, database-backed Web applications. Key verified components include a cooperative threading library and an implementation of a domain-specific language for XML processing. We have deployed our case-study system on mobile robots, where it interfaces with off-the-shelf components for sensing, actuation, and control.National Science Foundation (U.S.) (NSF grant CCF-1253229)United States. Defense Advanced Research Projects Agency (DARPA, agreement number FA8750-12-2-0293

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 12224 and 12225 constitutes the refereed proceedings of the 32st International Conference on Computer Aided Verification, CAV 2020, held in Los Angeles, CA, USA, in July 2020.* The 43 full papers presented together with 18 tool papers and 4 case studies, were carefully reviewed and selected from 240 submissions. The papers were organized in the following topical sections: Part I: AI verification; blockchain and Security; Concurrency; hardware verification and decision procedures; and hybrid and dynamic systems. Part II: model checking; software verification; stochastic systems; and synthesis. *The conference was held virtually due to the COVID-19 pandemic

    Verificare: a platform for composable verification with application to SDN-Enabled systems

    Full text link
    Software-Defined Networking (SDN) has become increasing prevalent in both the academic and industrial communities. A new class of system built on SDNs, which we refer to as SDN-Enabled, provide programmatic interfaces between the SDN controller and the larger distributed system. Existing tools for SDN verification and analysis are insufficiently expressive to capture this composition of a network and a larger distributed system. Generic verification systems are an infeasible solution, due to their monolithic approach to modeling and rapid state-space explosion. In this thesis we present a new compositional approach to system modeling and verification that is particularly appropriate for SDN-Enabled systems. Compositional models may have sub-components (such as switches and end-hosts) modified, added, or removed with only minimal, isolated changes. Furthermore, invariants may be defined over the composed system that restrict its behavior, allowing assumptions to be added or removed and for components to be abstracted away into the service guarantee that they provide (such as guaranteed packet arrival). Finally, compositional modeling can minimize the size of the state space to be verified by taking advantage of known model structure. We also present the Verificare platform, a tool chain for building compositional models in our modeling language and automatically compiling them to multiple off-the-shelf verification tools. The compiler outputs a minimal, calculus-oblivious formalism, which is accessed by plugins via a translation API. This enables a wide variety of requirements to be verified. As new tools become available, the translator can easily be extended with plugins to support them

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers
    corecore