
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Unifying Static And Runtime Analysis In
Declarative Distributed Systems
Chen Chen
University of Pennsylvania, cchen.upenn@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2220
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Chen, Chen, "Unifying Static And Runtime Analysis In Declarative Distributed Systems" (2017). Publicly Accessible Penn Dissertations.
2220.
https://repository.upenn.edu/edissertations/2220

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2220?utm_source=repository.upenn.edu%2Fedissertations%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2220
mailto:repository@pobox.upenn.edu

Unifying Static And Runtime Analysis In Declarative Distributed Systems

Abstract
Today’s distributed systems are becoming increasingly complex, due to the ever-growing number of network
devices and their variety. The complexity makes it hard for system administrators to correctly configure
distributed systems. This motivates the need for effective analytic tools that can help ensure correctness of
distributed systems.

One challenge in ensuring correctness is that there does not exist one solution that works for all properties.
One type of properties, such as security properties, are so critical that they demand pre-deployment
verification (i.e., static analysis) which, though time-consuming, explores the whole execution space.
However, due to the potential problem of state explosion, static verification of all properties is not practical,
and not necessary. Violation of non-critical properties, such as correct routing with shortest paths, is tolerable
during execution and can be diagnosed after errors occur (i.e., runtime analysis), a more light-weight approach
compared to verification.

This dissertation presents STRANDS, a declarative framework that enables users to perform both pre-
deployment verification and post-deployment diagnostics on top of declarative specification of distributed
systems. STRANDS uses Network Datalog (NDlog), a distributed variant of Datalog query language, to
specify network protocols and services. STRANDS has two components: a system verifier and a system
debugger. The verifier allows the user to rigorously prove safety properties of network protocols and services,
using either the program logic or symbolic execution we develop for NDlog programs. The debugger, on the
other hand, facilitates diagnosis of system errors by allowing for querying of the structured history of network
execution (i.e., network provenance) that is maintained in a storage-efficient manner.

We show the effectiveness of STRANDS by evaluating both the verifier and the debugger. Using the verifier,
we prove path authenticity of secure routing protocols, and verify a number of safety properties in software-
defined networking (SDN). Also, we demonstrate that our provenance maintenance algorithm achieves
significant storage reduction, while incurring negligible network overhead.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Boon Loo

Second Advisor
Steve Zdancewic

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2220

https://repository.upenn.edu/edissertations/2220?utm_source=repository.upenn.edu%2Fedissertations%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages

Keywords
Declarative language, Distributed system, Logic, Provenance, Verification

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2220

https://repository.upenn.edu/edissertations/2220?utm_source=repository.upenn.edu%2Fedissertations%2F2220&utm_medium=PDF&utm_campaign=PDFCoverPages

UNIFYING STATIC AND RUNTIME ANALYSIS
IN DECLARATIVE DISTRIBUTED SYSTEMS

Chen Chen

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2017

Supervisor of Dissertation Co-Supervisor of Dissertation

Boon Thau Loo Limin Jia
Professor Assistant Research Professor
Computer and Information Science Electrical & Computer Engineering

Carnegie Mellon University

Graduate Group Chairperson

Lyle Ungar
Professor
Computer and Information Science

Dissertation Committee

Steve Zdancewic (Chair), Professor of Computer Science

Andre Scedrov, Professor of Mathematics and Computer Science

Andreas Haeberlen, Associate Professor of Computer Science

Wenchao Zhou, Assistant Professor of Computer Science (Georgetown University)

UNIFYING STATIC AND RUNTIME ANALYSIS

IN DECLARATIVE DISTRIBUTED SYSTEMS

c© COPYRIGHT

2017

Chen Chen

To Ling Ding, my love.

iii

ACKNOWLEDGMENT

This dissertation would not have been possible without the support and help of my advisors,

committee members, collaborators, friends and family, who I would like to thank for their

company and advice from the bottom of my heart.

First and foremost I would like to thank my advisor, Professor Boon Thau Loo, and my

co-advisor, Professor Limin Jia (Carnegie Mellon University), who I closely collaborate with

throughout my graduate life. Boon has been an extremely supportive advisor since my first

day at the University of Pennsylvania. It is a privilege for me to work with Boon, whose

passion for research is contagious. Boon is always actively involved my projects, whether

it be providing insights into problems or evaluating the proposed solution. Boon also offers

me comprehensive training in terms of programming, paper writing and oral presentation

by working side-by-side with me throughout the development of research projects.

Though Limin advises me remotely, such collaboration never makes her help and advice any

less. Limin patiently guided me through the first few years of my Ph.D life, when I gradually

figured out, under her supervision, the initial research direction of applying formal methods

to networking. This topic eventually turned into my dissertation. Limin also teaches me

how to find, evaluate and tackle a problem in a systematic way, not to mention that she

also gave tremendous help in improving my paper writing and experimental evaluation.

I am also very grateful for my dissertation committee members: Professor Steve Zdancewic,

Professor Andre Scedrov, Professor Andreas Haeberlen, and Professor Wenchao Zhou. Steve

is the committee chair for both my dissertation work and WPE-II examination, and provides

constructive advice regarding my research orientation, write-up and presentation. Andre is

always patient and cares much about the progress of my dissertation. Andreas has been

extremely helpful in evaluating my dissertation research and providing insightful and im-

portant feedback to my dissertation. Wenchao is actually more than a committee member.

In fact, Wenchao has been actively engaged in all my Ph.D projects and serves more like

iv

an unofficial advisor. I learned a lot from Wenchao, through his advice, comments and his

achievement as a professor.

I also want to express my sincere gratitude to all the collaborators. Sangeetha A.Jyothi

was the first graduate student I collaborated at Upenn. She helped me understand the

implementation of declarative programming languages quickly by answering almost all the

questions I asked. Hao Xu is another graduate student I was lucky to collaborate with.

Hao is an expert in C++ programming language, without whom I could not have been

able to implement the demo for declarative SBGP so quickly. I also would like to thank

Cheng Luo for implementing SCION with me and documenting all the experiments. Harshal

Tushar Lehri joined the provenance project and was of tremendous help when evaluating

our proposed solution. Our collaboration extended even after the paper was accepted. Lay

Kuan Loh is an very important collaborator as well. We worked together for three years

on two different projects. Her help with system implementation and proof of theorems

was indispensable and I much appreciate her efforts and contribution to the work in this

dissertation. Another person that I want to especially thank is Changbin Liu, who was

my mentor during my internship at AT&T Labs Research. Changbin opened the door to

Python for me, and worked side-by-side with me during that enjoyable three-month period

at AT&T. In addition, I woud like to thank Suyog Mapara, Chen Zhu, Anupam Alur, Sibi

Vijayakumar for contributing a lot to the work in this dissertation.

I am also lucky to make a lot of friends at Upenn. They are: Behnaz Arzani, Arthur Azevedo

de Amorim, Saeed Abedi, Ang Chen, Loris D’Antoni, Yi Ge, Harjot Gill, Justin Hsu, Kai

Hong, Radoslav Ivanov, Zhihao Jiang, Junyi Li, Xi Lin, Fei Miao, Gang Song, Xujie Si,

Yifei Yuan, Zhepeng Yan, Dong Lin, Antonis Papadimitriou, Mukund Raghothaman, Nicu

Stiurca, Nikos Vasilakis, Anduo Wang, Shaohui Wang, Yang Wu, Yinjun Wu, Zhiwei Wu,

Meng Xu, Hongbo Zhang, Jianzhou Zhao, Mabel Zhang, Menglong Zhu, Mingchen Zhao,

Nan Zheng, Qizhen Zhang, Yi Zhang, Zhuoyao Zhang, Xin Zhang.

Last but not the least, I want to thank my parents for their unrelenting support and

v

sacrifice during my pursuit of Ph.D. Without their understanding this journey could have

been much harder. I am also extremely happy to have the company of Yang Li and Qianru

Jia throughout my Ph.D life, who I always view as close family members.

Finally I dedicate this dissertation to my lovely girlfriend Ling Ding, who supports me and

my work with her whole heart from the first day we met. My achievement is unimaginable

without her continuing love and encouragement.

This dissertation is supported by the following funding: NSF CNS-1218066, NSF CNS-

1117052, NSF CNS-1018061, NSF CNS-0845552, NSF ITR-1138996, NSF CNS-1115706,

FA9550-12-1-0327, NSF CNS-1453392, NSF CNS-1513679, NSF CNS-1065130, NSF CNS-

1513961, NSF CNS-1513734, AFOSR MURI ’Science of Cyber Security: Modeling, Com-

position, and Measurement’ and AFOSR Young Investigator award.

vi

ABSTRACT

UNIFYING STATIC AND RUNTIME ANALYSIS

IN DECLARATIVE DISTRIBUTED SYSTEMS

Chen Chen

Boon Thau Loo
Limin Jia

Today’s distributed systems are becoming increasingly complex, due to the evergrowing

number of network devices and their variety. The complexity makes it hard for system

administrators to correctly configure distributed systems. This motivates the need for

effective analytic tools that can help ensure correctness of distributed systems.

One challenge in ensuring correctness is that there does not exist one solution that works for

all properties. One type of properties, such as security properties, are so critical that they

demand pre-deployment verification (i.e., static analysis) which, though time-consuming,

explores the whole execution space. However, due to the potential problem of state explo-

sion, static verification of all properties is not practical, and not necessary. Violation of

non-critical properties, such as correct routing with shortest paths, is tolerable during exe-

cution and can be diagnosed after errors occur (i.e., runtime analysis), a more light-weight

approach compared to verification.

This dissertation presents STRANDS, a declarative framework that enables users to per-

form both pre-deployment verification and post-deployment diagnostics on top of declar-

ative specification of distributed systems. STRANDS uses Network Datalog (NDlog), a

distributed variant of Datalog query language, to specify network protocols and services.

STRANDS has two components: a system verifier and a system debugger. The verifier

allows the user to rigorously prove safety properties of network protocols and services, us-

ing either the program logic or symbolic execution we develop for NDlog programs. The

vii

debugger, on the other hand, facilitates diagnosis of system errors by allowing for querying

of the structured history of network execution (i.e., network provenance) that is maintained

in a storage-efficient manner.

We show the effectiveness of STRANDS by evaluating both the verifier and the debugger.

Using the verifier, we prove path authenticity of secure routing protocols, and verify a

number of safety properties in software-defined networking (SDN). Also, we demonstrate

that our provenance maintenance algorithm achieves significant storage reduction, while

incurring negligible network overhead.

viii

TABLE OF CONTENTS

ACKNOWLEDGMENT iv

ABSTRACT vii

LIST OF TABLES xi

LIST OF ILLUSTRATIONS xv

1 Introduction 1

2 Background 6

2.1 Network Datalog . 6

3 Theorem Proving with Program Logic 18

3.1 SANDlog . 20

3.2 A Program Logic for SANDlog . 21

3.3 Verification Condition Generator . 32

3.4 Case Studies . 35

4 Automated Verification and Debugging

with Symbolic Execution 57

4.1 Overview . 58

4.2 Analyzing Non-recursive Programs . 61

4.3 Extension to Recursive Programs . 74

4.4 Case Study . 79

5 Runtime Analysis with Compressed Provenance 106

5.1 Background . 108

5.2 Model . 112

ix

5.3 Basic Storage Optimization . 115

5.4 Equivalence-based Compression . 117

5.5 Implementation . 133

5.6 Evaluation . 137

6 Related Work 149

6.1 Static Analysis of Distributed Systems . 149

6.2 Runtime Analysis of Distributed Systems 151

7 Future Work 155

7.1 A More Complete Framework of Provenance Compression 155

7.2 Optimization of Static Analysis . 157

8 Conclusion 159

BIBLIOGRAPHY 160

x

LIST OF TABLES

TABLE 1 : Tuple invariants in ϕI for S-BGP route authenticity 43

TABLE 2 : SANDlog encoding of path construction in SCION 49

TABLE 3 : Safety properties of progESL and verification results 94

TABLE 4 : Relations for progFW . 95

TABLE 5 : Summary of progFW encoding . 97

TABLE 6 : Relations for progWeakFW . 98

TABLE 7 : Relations for progLB . 101

TABLE 8 : Summary of progLB encoding . 101

TABLE 9 : Relations for progARP . 104

TABLE 10 : Results of checking safety properties of progARP on our tool 105

TABLE 11 : Relational tables (ruleExec and prov) maintaining the provenance tree

in Figure 47. 110

TABLE 12 : Optimized ruleExec and prov tables for the provenance tree in Figure 48.116

TABLE 13 : a ruleExec table and a prov table for compressed provenance trees

produced in Figure 51 . 124

TABLE 14 : The ruleExecNode table and the ruleExecLink table replacing the ruleExec

table in Table 13 to allow for compression of the shared rule execu-

tion nodes. 127

TABLE 15 : Relations for maintaining compressed provenance 135

TABLE 16 : Safety properties of maintenance of compressed provenance and ver-

ification results . 136

xi

LIST OF ILLUSTRATIONS

FIGURE 1 : The overall architecture of STRANDS that unifies static and run-

time analysis of distributed systems. 4

FIGURE 2 : Syntax of NDlog . 6

FIGURE 3 : A NDlog program for computing all-pair shortest paths 7

FIGURE 4 : An Example Scenario. 9

FIGURE 5 : Operational Semantics . 11

FIGURE 6 : Insertion rules for evaluating a single ∆ rule 14

FIGURE 7 : Deletion rules for evaluating a single ∆ rule 17

FIGURE 8 : Architecture of a unified framework for implementing and verifying

secure routing protocols. 19

FIGURE 9 : Cryptographic functions in SANDlog 20

FIGURE 10 : Rules in first-order logic. 22

FIGURE 11 : Rules in program logic . 23

FIGURE 12 : Proof of ϕsp . 26

FIGURE 13 : Trace-based semantics . 27

FIGURE 14 : S-BGP encoding . 39

FIGURE 15 : Tuples for progsbgp . 40

FIGURE 16 : Definitions of goodPath . 41

FIGURE 17 : Definitions of goodPath2 . 46

FIGURE 18 : An example deployment of SCION 47

FIGURE 19 : Tuples for SCION . 50

FIGURE 20 : Definitions of goodInfo . 51

FIGURE 21 : Definitions of goodFwdPath . 54

xii

FIGURE 22 : An erroneous NDlog program for demonstration purpose. The rule

r2 is wrong as it uses onehop X Z C2 as its body relation, which

should be onehop Z Y C2 . 58

FIGURE 23 : A dependency graph for the ThreeHops program(buggy) 60

FIGURE 24 : Construct derivation pools for non-recursive programs 63

FIGURE 25 : Generate derivation pool for one predicate 64

FIGURE 26 : Property query . 67

FIGURE 27 : Property query with network constraints 68

FIGURE 28 : Construct derivation pools for recursive programs 90

FIGURE 29 : Inference rules for correctness proof of recursive NDlog programs 91

FIGURE 30 : NDlog implementation of progESL 92

FIGURE 31 : Network constraints for Ethernet source learning 93

FIGURE 32 : A counterexample for property ϕESL2 93

FIGURE 33 : A counterexample for property ϕESL3 95

FIGURE 34 : A counterexample for property ϕWeakFW 95

FIGURE 35 : NDlog implementation of progFW 96

FIGURE 36 : Network constraints for the firewall program 97

FIGURE 37 : Properties for the stateful firewall 98

FIGURE 38 : NDlog implementation of progWeakFW 99

FIGURE 39 : Network constraints for weak firewall 100

FIGURE 40 : NDlog implementation of progLB 100

FIGURE 41 : Network constraints for load balancing 102

FIGURE 42 : A counter example for property ϕLB 102

FIGURE 43 : NDlog implementation of progARP 103

FIGURE 44 : Network constraints for ARP . 105

FIGURE 45 : An NDlog program for packet forwarding 108

FIGURE 46 : An example deployment of packet forwarding. Node n1 and node

n2 has a local route table indicating routes towards node n3. . . . 108

xiii

FIGURE 47 : A (distributed) provenance tree for execution of packetp@n1, n1, n3, “data”q,

which traversed from node n1 to node n3 in Figure 46. 111

FIGURE 48 : An optimized provenance tree for the tree in Figure 47. 115

FIGURE 49 : The attribute-level dependency graph for the packet forwarding

program in Figure 45. 120

FIGURE 50 : Pseudocode to identify equivalence keys 121

FIGURE 51 : An example execution of the packet forwarding program. The pro-

gram is first triggered by packetp@n1, n1, n3, “data”q, followed by

packetp@n1, n1, n3, “url”q. 123

FIGURE 52 : An updated topology of Figure 46. A new node n4 is deployed to

reach n3. The route table of n1 is updated to forward packets to

n4 now. 128

FIGURE 53 : Pseudocode for querying a provenance tree. 131

FIGURE 54 : Rewritten program implementing equivalence key checking for packet

forwarding in Figure 45. 133

FIGURE 55 : Cumulative growth rate of provenance with 100 pairs of communi-

cating nodes, at input rate of 100 packets/second. 138

FIGURE 56 : Provenance storage growth of all nodes, with input rate of 100

packets/second for 100 pairs of communicating nodes. 138

FIGURE 57 : Provenance storage usage with 2000 input packets evenly distributed

among given number of pairs. 138

FIGURE 58 : Bandwidth consumption during packet forwarding, with 500 pairs

of nodes, each transmitting 100 packets. 138

FIGURE 59 : Cumulative distribution of provenance querying latency for 100

random queries with 100 node pairs. 139

FIGURE 60 : Cumulative provenance storage growth rate of nameservers with

input request at a rate of 1000 requests/second. 139

FIGURE 61 : DELP for DNS resolution. 145

xiv

FIGURE 62 : Provenance storage growth with increasing URLs, with 200 re-

quests sent in total. 146

FIGURE 63 : Bandwidth consumption for DNS resolution with 100,000 DNS re-

quests. 146

FIGURE 64 : Provenance storage growth with continuous input requests at 1000

requests/sec. 146

xv

CHAPTER 1

Introduction

Distributed systems today are playing an ever more important role in supporting a variety

of services, such as distributed file systems [38]. As a result, failure in a distributed system

is costly, especially for those that provide mission-critical services. Despite the importance

of system correctness, it is difficult to manually ensure that a distributed system oper-

ates as expected, because a typical distributed system today has large scale (i.e., millions

of servers), contains heterogeneous devices (e.g., routers, switches and middleboxes) and

changes configuration frequently (e.g., due to virtual machine migration).

In light of this, researchers have proposed a variety of approaches to help network admin-

istrators and researchers analyze distributed systems. One branch of work applies static

analysis to distributed systems to verify properties that are expected to hold during system

execution ([56][9][47][50][13]). Static analysis requires the analyst to formally specify the

system in question, and use techniques such as model checking [8], theorem proving [14],

and symbolic execution [51] to rigorously analyze the desired properties of the specification.

Static analysis could unveil design flaws before they manifest themselves at runtime, which

could lead to undesirable and even disastrous consequences.

On the other hand, static analysis is not the panacea for system failure, for several reasons.

First, static analysis has no guarantee over unproven properties. Certain properties (e.g.,

security guarantee) may not even occur to the analyst when he/she is designing the system.

Second, a proven property could still be violated during runtime, due to bugs in low-level

software (e.g., compilers) and hardware (e.g., processors). Last but not the least, static

analysis is more suitable for an environment where system policies and configuration are

relatively static. A dynamic environment – e.g., a distributed system with frequent virtual

machine migration – changes so rapidly that the result of static analysis could become

1

outdated soon after verification is completed.

To overcome the deficiency of static analysis, network administrators also need tools to

help analyze distributed systems at runtime – i.e., monitoring the system, and, when the

system fails, identifying the root cause of the problem. For example, message logging [29] is

a typical runtime analysis technique that is widely used by network administrators. Also,

packet monitoring tools such as wireshark [1] are also popular in detecting abnormal traf-

fic in networks. There is work such as NetSight [43] that records the packet history as

well. Recently, the emergence of network provenance [95][92] has made it possible for net-

work administrators to query the complete derivation history of network events. Network

provenance captures the causal relationship among individual events in a network, even if

these events may occur on different network devices. Optimization also has been made to

maintain network provenance at low cost, such as only carrying the last-hop provenance

information during system execution (i.e., reference-based provenance maintenance [95]).

The problem with runtime analysis is its low coverage over the space of all possible system

execution traces. Subtle bugs, such as those caused by race conditions, may only happen

occasionally, making it hard for the user to identify the root cause simply by monitoring ex-

ecution traces. Furthermore, the overhead of enabling runtime analysis is high. To perform

system monitoring tasks, for example, a distributed system often needs to be instrumented

with monitoring software or hardware that inevitably interferes with normal execution. The

storage overhead required for maintaining system meta-data is also a concern. For instance,

in a distributed system where millions of packets are input every second, storing history (or

provenance) of all the packets takes up much storage space.

This dissertation intends to bridge the gap between static analysis and runtime analysis

through a unified declarative specification language – Network Datalog (NDlog) [54]. We

show that not only popular static analysis techniques such as theorem proving and sym-

bolic execution can be successfully applied to a distributed system modeled by NDlog, but

runtime analysis, such as storage-optimized network provenance, can be supported easily as

2

well. Furthermore, with the help of NDlog, we try to combine static analysis and runtime

analysis, so that they could complement each other in system verification and debugging.

An overview of the proposed framework – called STRANDS– can be found in Figure 1.

Oval nodes in Figure 1 represent input by the user, including the declarative specification

(i.e., NDLog programs) of distributed system and the properties to be verified. We choose

to use NDLog as our specification language for two reasons. First, it is shown that declar-

ative languages such as NDLog can specify a variety of network protocols concisely [55].

Second, NDLog is a specification language that allows for both verification and low-level

implementation. As a result, static and runtime analysis can be performed in a unified

framework.

The three shadow boxes represent the three components of this dissertation: (1) a program

logic for verifying security properties of secure routing protocols [18] (Chapter 3); (2) a static

analyzer of network protocols and services using symbolic execution of NDlog programs [23]

(Chapter 4); and (3) a storage-efficient provenance maintenance engine [22] (Chapter 5).

Specifically:

• A Hoare-style program logic is developed for verifying security properties of secure

routing protocols, such as Secure BGP (SBGP) [75]. To capture the security primitives

in those protocols, NDLog is enhanced with security-related user-defined functions

(e.g., symmetric/asymmetric encryption), to create a new programming language

SANDlog. The program logic is proved to be sound with regards to the semantics of

SANDlog. In the case study, we demonstrate the effectiveness of the proposed logic

by formally proving the path authenticity property over two secure routing proposals:

SBGP and SCION [91].

• Though the program logic is effective in property verification, the manual proof process

with proof assistants (e.g., Coq [79]) could be tedious and time-consuming for network

administrators. Therefore, the second part of this dissertation aims at achieving

3

Distributed	system

System	execution

Runtime	Analysis Static	Analysis

Network	forensics,
Accountability,

…

Declarative	specification Desirable	properties

1

Network	
provenance/history	

Symbolic	
execution
[Chapter	4]

System	verification

Properties	
hold?

Counterexample

NoYes

Challenges
Scalable	

maintenance

Storage	overhead
[Chapter	5]

Versioning

Incomplete	
information

Theorem	
proving

[Chapter	3]

Model	
checking

…

…

Figure 1: The overall architecture of STRANDS that unifies static and runtime analysis of
distributed systems.

automation during static analysis of distributed systems. To do this, expressiveness

of the property specification language is limited – i.e., the properties to be proved

need to be specified in a restricted form of first-order logic. During verification,

the specified property is checked, with a few novel optimization, against all possible

execution traces of the distributed system. The execution traces are obtained through

symbolic execution of the NDLog program specifying the system. With the help of an

SAT solver, the verification process would further produce a counterexample when the

property fails to hold. In the case study, a number of properties about software-defined

networking applications are verified, with several subtle bugs identified.

• The third piece of this dissertation focuses on providing storage-efficient network

provenance for runtime analysis of distributed systems. Network provenance [95]

enables network administrators to query the execution history of network events. To

compress provenance, an equivalence relation for provenance trees is defined and each

equivalence class only maintains one concrete provenance copy that is shared by all

the members. The compression process is efficient, as it is proved that the equiva-

4

lence of provenance trees could be identified by only examining the attributes of input

tuples. Such efficiency is attributed to the introduction of Distributed Event-driven

Linear Programs (DELP) – a constrained variant of NDLog programs – for modeling

network protocols and services. Our experiments of packet forwarding and DNS res-

olution showed that the compression scheme achieves low storage consumption, low

network overhead and low query latency.

Based on Figure 1, to perform analysis of a distributed system, a user first needs to specify

the system in NDLog or its variants (e.g., SANDlog or DELP). The specification is readily

subject to formal verification, either with the help of program logic or by symbolic execution.

If the property is verified as true, the user could further prove other desirable properties,

or execute the specification using a declarative networking engine (e.g., RapidNet [70]). If

verification fails, the framework would be able to generate counterexamples to help the

user identify and fix errors in the specification of either the program or the property. On

the other hand, The user could perform runtime analysis after execution – e.g., network

forensics or accountability – by querying the (compressed) provenance maintained by the

provenance engine.

The structure of the dissertation is as follows, we present the program logic in Chapter 3, and

show how to automatically verify safety properties of networking applications in Chapter 4.

We present compressed provenance for runtime analysis in Chapter 5. The related work

and the future work are summarized in Chapter 6 and Chapter 7 respectively.

5

CHAPTER 2

Background

We first provide the background of our unified specification language – Network Datalog

(NDlog) [54], and its operational semantics. In each individual piece of work, we extend

NDlog with a variety of features (e.g., security primitives) to cater to specific needs of

different applications.

2.1. Network Datalog

2.1.1. Syntax

NDlog’s syntax is summarized in Figure 2. A typical NDlog program is composed of a set

of rules, each of which consists of a rule head and a rule body. The rule head is a predicate,

or relation (we use predicate and relation interchangeably). A rule body consists of a

list of body elements which are either relations or atoms (i.e. assignments and inequality

constraints). The head relation supports aggregation functions as its arguments, whose

semantics will be introduced in Section 2.1.2.

Atom a ::“ x :“ t | t1 bop t2
Terms t ::“ x | c | ι | fp~t q | fcp~t q
Predicate pred ::“ ppagHq | ppagBq
Body Elem B ::“ ppagBq | a
Arg List ags ::“ ¨ | ags, x | ags, c
Rule Body body ::“ ¨ | body, B
Body Args agB ::“ @ι, ags
Rule r ::“ ppagHq :́ body
Head Args agH ::“ agB |@ι, ags, Fagrxxy, ags
Base tp rules b ::“ ppagHq.
Program progpιq ::“ b1, ¨ ¨ ¨ , bn, r1, ¨ ¨ ¨ , rk

Figure 2: Syntax of NDlog

6

sp1 pathp@s, d, c, pq :́ linkp@s, d, cq, p :“ rs, ds.
sp2 pathp@z, d, c, pq :́ linkp@s, z, c1q, pathp@s, d, c2, p1q, c :“ c1` c2, p :“ z::p1.
sp3 bestPathp@s, d,minxcy, pq :́ pathp@s, d, c, pq.

Figure 3: A NDlog program for computing all-pair shortest paths

To support distributed execution, a NDlog program prog is parametrized over the node it

runs on. Each relation in the program is supposed to have a location specifier, written @ι,

which specifies where a relation resides and serves as the first argument of a relation. A rule

head can specify a location different from its body relations. When such a rule is executed,

the derived tuple is sent to the remote node represented by the location specifier of the head

tuple. We discuss the operational semantics of NDlog in detail in Section 2.1.2.

In Figure 3, we show an example program for computing the shortest path between each

pair of nodes in a network. s is the location parameter of the program, representing the

ID of the node where the program is executing. Each node stores three kinds of tuples:

linkp@s, d, cq means that there is a direct link from s to d with cost c; pathp@s, d, c, pq means

that p is a path from s to d with cost c; and bestPathp@s, d, c, pq states that p is the lowest-

cost path between s and d. Here, link is a base tuple, whose values are determined by the

concrete network topology. path and bestPath are derived tuples. Figure 3 only shows the

rules common to all network nodes. Rules for initializing the base tuple link depend on the

topology and are omitted from the figure.

In the program, rule sp1 computes all one-hop paths based on direct links. Rule sp2 ex-

presses that if there is a link from s to z of cost c1 and a path from s to d of cost c2, then

there is a path from z to d with cost c1+c2 (for simplicity, we assume links are symmetric,

i.e. if there is a link from s to d with cost c, then a link from d to s with the same cost

c also exists). The generated path tuple will be sent to z, as indicated by the head of sp2.

Finally, rule sp3 aggregates all paths with the same pair of source and destination (s and d)

to compute the shortest path. The arguments that appear before the aggregation denotes

the group-by keys.

7

To execute the program, a user provides rules for initializing base tuples. For example, if

we would like to run the shortest-path program over the topology given in Figure 4, the

following rules will be included in the program. Rules rb1 lives at node A, rules rb2 and

rb3 live at node B, and rule rb4 lives at node C.

rb1 linkp@A,B, 1q. rb3 linkp@B,C, 1q.

rb2 linkp@B,A, 1q. rb4 linkp@C,B, 1q.

2.1.2. Operational Semantics

The operational semantics of NDlog adopts a distributed state transition model. Each node

runs a designated NDlog program, and maintains a database of derived tuples as its local

state. Nodes can communicate with each other by sending tuples over the network, which

is represented as a global network queue. The evaluation of the NDlog programs follows

the PSN algorithm [54], and updates the database incrementally. The semantics introduced

here is similar, except that we make explicit which tuples are derived, which are received,

and which are sent over the network. This addition is crucial to specifying and proving

protocol properties.

At a high-level, each node computes its local fixed-point by firing the rules on newly-derived

tuples. The fixed-point computation can also be triggered when a node receives tuples from

the network. When a tuple is derived, it is sent to the node specified by its location specifier.

Instead of blindly computing the fixed-point, we make sure that only rules whose body tuples

are updated are fired. The operational semantics also support deletion of tuples. A deletion

is propagated through the rules similar to an insertion.

More formally, the constructs needed for defining the operational semantics of NDlog are

presented below.

8

A B C

SA = {A,
 ψA = {
 (1,link(@A,B,1)),
 (1,path(@A,B,1,[A,B])),
 (1,bestPath(@A,B,1,[A,B]))}
 UA = [],
 progA = sp}

SB = {B,
 ψB = {
 (1,link(@B,A,1)),
 (1,link(@B,C,1)),
 (1,path(@B,A,1,[B,A])),
 (1,path(@B,C,1,[B,C])),
 (1,bestPath(@B,A,1,[B,A])),
 (1,bestPath(@B,C,1,[B,C]))}
 UB = [], progB = sp}

SC = {C,
 ψC = {
 (1,link(@C,B,1)),
 (1,path(@C,B,1)),
 (1,bestPath(@C,B,1,[C,B]))}
 UC = [],
 progC = sp}

Q = [+path(@A,C,2,[A,B,C]), +path(@C,A,2,[C,B,A])]

cost = 1 cost = 1

Figure 4: An Example Scenario.

Table Ψ ::“ ¨ |Ψ, pn, P q Network Queue Q ::“ U

Update u ::“ ´P | ` P Local State S ::“ pι,Ψ,U , progpιqq

Update List U ::“ ru1, ¨ ¨ ¨ , uns Configuration C ::“ QB S1, ¨ ¨ ¨ ,Sn

Trace T ::“ τ0
ÝÑ C1

τ1
ÝÑ C2 ¨ ¨ ¨

τn
ÝÑ Cn`1

We write P to denote tuples. The database for storing all derived tuples on a node is

denoted Ψ. Because there could be multiple derivations of the same tuple, we associate

each tuple with a reference count n, recording the number of valid derivations for that

tuple. An update is either an insertion of a tuple, denoted `P , or a deletion of a tuple,

denoted ´P . We write U to denote a list of updates. A node’s local state, denoted S,

consists of the node’s identifier ι, the database Ψ, a list of unprocessed updates U , and

the program prog that ι runs. A configuration of the network, written C, is composed of

a network update queue Q, and the set of the local states of all the nodes in the network.

The queue Q models the update messages sent across the network. Finally, a trace T is a

sequence of time-stamped (i.e. τi) configuration transitions.

Figure 4 presents an example scenario of executing the shortest-path program in Figure 3.

The network consists of three nodes, A, B and C, connected by two links with cost 1. Each

node’s local state is displayed right above the node. For example, the local state of the

node A is given by SA above it. The network queue Q is presented at the top of Figure 4.

In the current state, all three nodes are aware of their direct neighbors, i.e., link tuples are

9

in their databases ΨA, ΨB and ΨC . They have constructed paths to their neighbors (i.e.,

the corresponding path and bestPath tuples are stored). The current network queue Q stores

two tuples: +path(@A,C,2,[A,B,C]) and +path(@C,A,2,[C,B,A]), waiting to be delivered to their

destinations (node A and C respectively). These two tuples are the result of running sp2

at node B. We will explain further how configurations are updated based on the updates

in the network queue when introducing the transition rules.

Top-level transitions. The small-step operational semantics of a node is denoted S ãÑ

S 1,U . From state S, a node takes a step to a new state S 1 and generates a set of updates U

for other nodes in the network. The small-step operational semantics of the entire system

is denoted C ÝÑ C1, where C and C1 respectively represent the states of all nodes along with

the network queue before and after the transition. Figure 5 defines the rules for system

state transition.

• Global state transition (C ÝÑ C1).

Rule NodeStep states that the system takes a step when one node takes a step. As

a result, the updates generated by node i are appended to the end of the network

queue. We use ˝ to denote the list append operation. Rule DeQueue applies when

a node receives updates from the network. We write Q1 ‘ Q2 to denote a merge of

two lists. Any node can dequeue updates sent to it and append those updates to the

update list in its local state. Here, we overload the ˝ operator, and write S ˝ Q to

denote a new state, which is the same as S, except that the update list is the result

of appending Q to the update list in S.

• Local state transition (S ãÑ S 1,U). Rule Init applies when the program starts

to run. Here, only base rules—rules that do not have a rule body—can fire. The

auxiliary function BaseOf (prog) returns all the base rules in prog. In the resulting

state, the internal update list (Uin) contains all the insertion updates located at ι,

and the external update list (Uext) contains only updates meant to be stored at a

10

S ãÑ S 1,U

Uin “ r`p1p@ι,~t1q, ...,`pmp@ι,~tmqs rp1p@ι,~t1q, ¨ ¨ ¨ , pmp@ι,~tmqs “ BaseOfpprogq
pι,H, rs, progq ãÑ pι,H,Uin, progq, rs

Init

pUin,Uextq “ fireRulespι,Ψ, u,∆progq
pι,Ψ, u :: U , progq ãÑ pι,ΨZ u,U ˝ Uin, progq,Uext

RuleFire

C ÝÑ C1

Si ãÑ S 1i, U @j P r1, ns ^ j ‰ i, S 1j “ Sj

QB S1, ¨ ¨ ¨Sn ÝÑ Q ˝ U B S 11, ¨ ¨ ¨S 1n
NodeStep

Q “ Q1 ‘Q1 ¨ ¨ ¨ ‘Qn @j P r1, ns S 1j “ Sj ˝Qj

QB S1, ¨ ¨ ¨Sn ÝÑ Q1 B S 11, ¨ ¨ ¨S 1n
DeQueue

fireRulespι,Ψ, u,∆progq “ pUin,Uextq

fireRulespι,Ψ, u, rsq “ prs, rsq
Empty

fireSingleRpι,Ψ, u,∆rq “ pΨ1,Uin1,Uext1q fireRulespι,Ψ1, u,∆progq “ pUin2,Uext2q

fireRulespι,Ψ, u, p∆r,∆progqq “ pUin1 ˝ Uin2,Uext1 ˝ Uext2q
Seq

Figure 5: Operational Semantics

node different from ι. In this case, it is empty. Rule RuleFire (Figure 5) computes

new updates based on the program and the first update in the update list. It uses a

relation fireRules, which processes an update u, and returns a pair of update lists, one

for node ι itself, the other for other nodes. The last argument for fireRules, ∆prog,

transforms every rule r in the program prog into a delta rule, ∆r, for r, which we

explain when we discuss incremental maintenance. After u is processed, the database

of ι is updated with the update u (ΨZ u). The Z operation increases (decreases) the

reference count of P in Ψ by one, when u is an insertion (deletion) update `P (´P).

The update list in the resulting state is augmented with the new updates generated

from processing u.

• Fire rules (fireRulespι,Ψ, u,∆progq “ pUin,Uextq). Given one update, we fire rules in

11

the program prog that are affected by this update. Rule Empty is the base case where

all rules have been fired, so we directly return two empty sets. Given a program with

at least one rule (∆r,∆prog), rule Seq first fires the rule ∆r, then recursively calls

itself to process the rest of the rules in ∆prog. The resulting updates are the union of

the updates from firing ∆r and ∆prog.

Given the example scenario in Figure 4, at this moment node A dequeues the update

+path(@A,C,2,[A,B,C]) from the network queue Q at the top of Figure 4, and puts it into the

unprocessed update list UA (rule DeQueue). Node A then locally processes the update by

firing all rules that are triggered by the update, and generates new updates Uin and Uext. In

the resulting state, the local state of node A (ΨA) is updated with path(@A,C,2,[A,B,C]), and

UA now includes Uin. The network queue is also updated to include Uext (rule NodeStep).

Our operational semantics does not specify the time gaps between two consecutive re-

ductions and, therefore, does not determine time points as associated with a concrete

trace—such as C τ
ÝÑ C1, where τ represents the time at which a concrete transition takes

place. Instead, a trace (without time points) generated by the operational semantics—e.g.,

C ÝÑ C1—is an abstraction of all its corresponding annotations with time points that satisfy

monotonicity. In our assertions and proofs, we use time points only to specify a relative

order between events on a specific trace, so their concrete values are irrelevant.

Incremental maintenance. Now we explain in more detail how the database of a node

is maintained incrementally by processing updates in its internal update list Uin one at a

time. Following the strategy proposed in declarative networking [54], the rules in a NDlog

program are rewritten into ∆ rules, which can efficiently generate all the updates triggered

by one update. For any given rule r that contains k body tuples, k ∆ rules of the following

form are generated, one for each i P r1, ks.

∆ppagHq :́ pν1pagB1q, ..., p
ν
i´1pagBi´1q,∆pipagBiq, pi`1pagBi`1q, ..., pkpagBkq, a1, ..., am

12

∆pi in the body denotes the update currently being considered. ∆p in the head denotes

new updates that are generated as the result of firing this rule. Here pνi denotes a tuple of

name pi in the database Ψ or the internal update list Uin. In comparison, pi (without ν)

denotes a tuple of name pi only in Ψ. For example, the ∆ rules for sp2 are:

sp2a ∆pathp@z, d, c, pq :́ ∆linkp@s, z, c1q, pathp@s, d, c2, p1q, c :“ c1` c2, p :“ z::p1.

sp2b ∆pathp@z, d, c, pq :́ linkνp@s, z, c1q,∆pathp@s, d, c2, p1q, c :“ c1` c2, p :“ z::p1.

Rules sp2a and sp2b are ∆ rules triggered by updates of the link and path relation respectively.

For instance, when node A processes +path(@A,C,2,[A,B,C]), only rule sp2b is fired. In this

step, pathν includes the tuple path(@A,C,2,[A,B,C]), while path does not. On the other hand,

linkν and link denote the same set of tuples, because Uin does not contain any tuple of name

link. The rule evaluation then generates +path(@B,C,3,[B,A,B,C]), which will be communicated

to node B and further triggers rule sp2b at node B. Such update propagates until no further

new tuples are generated.

Rule Firing. We present in Figure 6 the set of rules for firing a single ∆ rule given an

insertion update. We write Ψν to denote the table resulted from updating Ψ with the

current update: Ψν “ ΨZ u.

Rule InsExists specifies the case where the tuple to be inserted (i.e. qip~tq) already exists.

We do not need to further propagate the update. Rule InsNew handles the case where

new updates are generated by firing rule r . In order to fire a rule r , we need to map its

bodies to concrete tuples in the database or the update list. We use an auxiliary function

ρpΨν ,Ψ, r, i,~tq to extract the complete list of substitutions for variables in the rule. Here i

and ~t indicate that qip~tq is the current update, where qi is the ith body tuple of rule r. Every

substitution σ in that set is a general unifier of the body tuples and constraints. Formally:

(1) ~t “ σpagBiq,

(2) @j P r1, i´ 1s, D~s,~s “ σpagBjq and qjp~sq P Ψν

13

fireSingleRpι,Ψ, u,∆rq “ pΨ1,Uin,Uextq

pn, qip~tqq P Ψ
fireSingleRpι,Ψ,`qip~tq,∆rq “ pΨ, rs, rsq

InsExists

∆r “ ∆pp@ι1, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨

qip~tq R Ψ ags does not contain any aggregate
Σ “ ρpΨν ,Ψ, r, i,~tq Σ1 “ selpΣ,Ψνq U “ genUpdpΣ,Σ1, p,Ψνq

if ι1 “ ι then Ui “ U ,Ue “ rs otherwise Ui “ rs,Ue “ U
fireSingleRpι,Ψ,`qip~tq,∆rq “ pΨ,Ui,Ueq

InsNew

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ qip~tq R Ψ
ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r, i,~tq

Ψ1 “ ΨZ tpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu
Aggpp, Fagr,Ψ1q “ pp@ι, ~sq pp@ι, ~sq P Ψ

fireSingleRpι,Ψ,`qip~tq,∆rq “ pΨ1, rs, rsq
InsAggSame

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ qip~tq R Ψ
ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r, i,~tq

Ψ1 “ ΨZ tpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu
Aggpp, Fagr,Ψ1q “ pp@ι, ~sq

pp@ι, ~s1q P Ψ ~s and ~s1 share the same key but different aggregate value
fireSingleRpι,Ψ,`qip~tq,∆rq “ pΨ1, r´pp@ι, ~s1q,`pp@ι, ~sqs, rsq

InsAggUpd

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨

qip~tq R Ψ ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r,~tq
Ψ1 “ ΨZ tpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu

Aggpp, Fagr,Ψ1q “ pp@ι, ~sq Epp@ι, ~s1q P Ψ
such that ~s and ~s1 share the same key but different aggregate value

fireSingleRpι,Ψ,`qip~tq,∆rq “ pΨ1, r`pp@ι, ~sqs, rsq
InsAggNew

Figure 6: Insertion rules for evaluating a single ∆ rule

14

(3) @j P ri` 1, ns, D~s,~s “ σpagBjq and qjp~sq P Ψ

(4) @k P r1,ms, σraks is true

We write ras to denote the constraint that a represents. When a is an assignment (i.e.,

x :“ fp~tq), ras is the equality constraint x “ fp~tq; otherwise, ras is a.

When multiple tuples with the same key are derived using a rule, a selection function sel

is introduced to decide which substitution to propagate. In NDlog run time, similar to a

relational database, a key value of a stored tuple pp~tq uniquely identifies that tuple. When

a different tuple pp~t1q with the same key is derived, the old value pp~tq and any tuple derived

using it need to be deleted. For instance, we can demand that each pair of nodes in the

network have a unique path between them. This is equivalent to designating the first two

arguments of path as its key. As a result, path(A,B,1,[A,B]) and path(A,B,2,[A,D,B]) cannot

both exist in the database.

We also use a genUpd function to generate appropriate updates based on the selected

substitutions. It may generate deletion updates in addition to an insertion update of

the new value. For example, assume that path(A,B,3,[A,C,D,B]) is in Ψν . If we were to

choose path(A,B,1,[A,B]) because it appears earlier in the update list, then genUpd returns

t`path(A,B,1,[A,B]),´path(A,B,3,[A,C,D,B])u. We leave the definitions of sel and genUpd ab-

stract here, as there are many possible strategies for implementing these two functions.

Aside from the strategy of picking the first update in the queue (illustrated above), another

possible strategy is to pick the last, as it is the freshest. Once the strategy of sel is fixed,

genUpd is also fixed. However, the only relevant part to the logic we introduce later is

that the substitutions used for an insertion update come from the ρ function, and that the

substitutions satisfy the property we defined above. In other words, our program logic can

be applied to a number of different implementation of sel and genUpd.

The rest of the rules in Figure 6 deal with generating an aggregate tuple. Rule InsAggNew

applies when the aggregate is generated for the first time. We only need to insert the

15

new aggregate value to the table. Additional rules (i.e. InsAggSame and InsAggUpd) are

required to handle aggregates where the new aggregate is the same as the old one or replaces

the old one.

To efficiently implement aggregates, for each tuple p that has an aggregate function in its

arguments, there is an internal tuple pagg that records all candidate values of p. When there

is a change to the candidate set, the aggregate is re-computed. For example, bestpathagg

maintains all candidate path tuples.

We also require that the location specifier of a rule head containing an aggregate function

be the same as that of the rule body. With this restriction, the state of an aggregate is

maintained in one single node. If the result of the aggregate is needed by a remote node,

we can write an additional rule to send the result after the aggregate is computed.

Rule InsAggSame applies when the new aggregates is the same as the old one. In this case,

only the candidate set is updated, and no new update is propagated. Rule InsAggUpd

applies when there is a new aggregate value. In this case, we need to generate a deletion

update of the old tuple before inserting the new one.

Figure 7 summaries the deletion rules. When the tuple to be deleted has multiple copies,

we only reduce its reference count. The rest of the rules are the dual of the corresponding

insertion rules.

We revisit the example in Figure 4 to illustrate how incremental maintenance is performed

on the shortest-path program. Upon receiving +path(@A,C,2,[A,B,C]), ∆ rule sp2b will be trig-

gered and generate a new update +path(@B,C,3,[B,A,B,C]), which will be included in Uext as

it is destined to a remote node B (rule InsNew). The ∆ rule for sp3 will also be triggered,

and generate a new update +bestPath(@A,C,2,[A,B,C]), which will be included in Uin (rule

InsAggNew). After evaluating the ∆ rules triggered by the update +path(@A,C,2,[A,B,C]),

we have Uin “ t+bestPath(@A,C,2,[A,B,C])u and Uext “ t+path(@B,C,3,[B,A,B,C])u. In addi-

tion, bestpathagg, the auxiliary relation that maintains all candidate tuples for bestpath, is

16

pn, qip~tqq P Ψ n ą 1
fireSingleRpι,Ψ,´qip~tq,∆rq “ pΨ, rs, rsq

DelExists

∆r “ ∆pp@ι1, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ p1, qip~tqq P Ψ
ags does not contain any aggregate tσ1, ¨ ¨ ¨ , σku “ selpρpΨν ,Ψ, r, i,~tq,Ψνq

U “ r´pp@ι1, σ1pagsqq, ¨ ¨ ¨ ,´pp@ι1, σkpagsqqs
if ι1 “ ι then Ui “ U ,Ue “ rs otherwise Ui “ rs,Ue “ U

fireSingleRpι,Ψ,´qip~tq,∆rq “ pΨ,Ui,Ueq
DelNew

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ p1, qip~tqq P Ψ
ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r, i,~tq

Ψ1 “ Ψztpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu
Aggpp, Fagr,Ψ1q “ pp@ι, ~sq pp@ι, ~sq P Ψ

fireSingleRpι,Ψ,´qip~tq,∆rq “ pΨ1, rs, rsq
DelAggSame

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ p1, qip~tqq P Ψ
ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r, i,~tq

Ψ1 “ Ψztpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu
Aggpp, Fagr,Ψ1q “ pp@ι, ~sq

pp@ι, ~s1q P Ψ ~s and ~s1 share the same key but different aggregate value
fireSingleRpι,Ψ,´qip~tq,∆rq “ pΨ1, r´pp@ι, ~s1q,`pp@ι, ~sqs, rsq

DelAggUpd

∆r “ ∆pp@ι, agsq :́ ¨ ¨ ¨ ,∆qipagBiq ¨ ¨ ¨ p1, qip~tqq P Ψ
ags contains an aggregate Fagr tσ1, ¨ ¨ ¨ , σku “ ρpΨν ,Ψ, r, i,~tq

Ψ1 “ Ψztpaggp@ι, σ1pagsqq, ¨ ¨ ¨ , paggp@ι, σkpagsqqu
Aggpp, Fagr,Ψ1q “ NULL

fireSingleRpι,Ψ,´qip~tq,∆rq “ pΨ1, r´pp@ι, ~s1qs, rsq
DelAggNone

Figure 7: Deletion rules for evaluating a single ∆ rule

also updated to reflect that a new candidate tuple has been generated. It now includes

bestpath(@A,C,2,[A,B,C]).

Discussion. The semantics introduced here will not terminate for programs with a cyclic

derivation of the same tuple, even though set-based semantics will. Most routing protocols

do not have such issue (e.g., cycle detection is well-adopted in routing protocols). Prior

work [63] has proposed improvements to solve this issue, which is not crucial for the sound-

ness of the proposed program logic.

17

CHAPTER 3

Theorem Proving with Program Logic

In recent years, we have witnessed an explosion of services provided over the Internet. These

services are increasingly transferring customers’ private information over the network and

used in mission-critical tasks. Central to ensuring the reliability and security of these

services is a secure and efficient Internet routing infrastructure. Unfortunately, the Internet

infrastructure, as it stands today, is highly vulnerable to attacks. The Internet runs the

Border Gateway Protocol (BGP), where routers are grouped into Autonomous Systems

(AS) administrated by Internet Service Providers (ISPs). Individual ASes exchange route

advertisements with neighboring ASes using the path-vector protocol. Each originating AS

first sends a route advertisement (containing a single AS number) for the IP prefixes it

owns. Whenever an AS receives a route advertisement, it adds itself to the AS path, and

advertises the best route to its neighbors based on its routing policies. Since these route

advertisements are not authenticated, ASes can advertise non-existent routes or claim to

own IP prefixes that they do not. These faults may lead to long periods of interruption of

the Internet; best epitomized by recent high-profile attacks [25, 67].

In response to these vulnerabilities, several new Internet routing architectures and proto-

cols for a more secure Internet have been proposed. These range from security extensions

of BGP (Secure-BGP (S-BGP) [49], ps-BGP [81], so-BGP [82]), to “clean-slate” Internet

architectural redesigns such as SCION [91] and ICING [60]. However, none of the proposals

formally analyzed their security properties. These protocols are implemented from scratch,

evaluated primarily experimentally, and their security properties shown via informal rea-

soning.

Existing protocol analysis tools [12, 27, 31] are rarely used in analyzing routing protocols

because they are considerably more complicated than cryptographic protocols: they often

18

SANDlog(Program(

Annota/ons(

SANDlog(Compiler(

Code((
genera/on(

Verifica/on(
condi/on(
genera/on(

Executable(
protocol(

Proof(
obliga/ons(

Theorem(
prover(

Simulator(
(Emulator)(

The round objects are
code (proofs), which are
the input or output of the
framework. The rectan-
gular objects are software
components of the frame-
work.

Figure 8: Architecture of a unified framework for implementing and verifying secure routing
protocols.

compute local states, are recursive, and their security properties need to hold on arbitrary

network topologies. As the number of models is infinite, model-checking-based tools in

general cannot be used to prove the protocol secure.

To overcome this limitation, STRANDS explores a novel proof methodology to verify these

protocols. First, STRANDS augments NDLog with cryptographic libraries to provide com-

pact encoding of secure routing protocols. We call our language SANDlog (stands for Se-

cure and Authenticated Network Datalog). We develop a program logic for reasoning about

SANDlog programs that execute in an adversarial environment. The properties proved

on a SANDlog program hold even when the program interact with potentially malicious

programs in the network.

Based on the program logic, we implement a verification condition generator (VCGen),

which takes as inputs the SANDlog program and user-provided annotations, and outputs

intermediary proof obligations as a Coq file, where proof can be filled. VCGen is integrated

into the SANDlog compiler, an cryptography-augmented extension to the declarative net-

working engine RapidNet [70]. The compiler is able to translate our SANDlog specification

into executable code, which is amenable to implementation and evaluation.

We summarize our technical contributions:

1. We define a program logic for verifying SANDlog programs in the presence of adver-

saries (Section 3.2). We prove that our logic is sound.

2. We implement VCGen for automatically generating proof obligations and integrate

19

VCGen into a compiler for SANDlog (Section 3.3).

3. We encode S-BGP and SCION in SANDlog, verify path authenticity properties of

these protocols, and run them in simulation (Section 3.4).

3.1. SANDlog

We specify secure routing protocols in a distributed declarative programming language

called SANDlog. SANDlog inherits the expressiveness of NDLog, and is augmented with

security primitives (e.g. asymmetric encryption) necessary for specifying secure routing

protocols. The security primitives are encoded as user-defined functions in SANDlog pro-

grams. Figure 9 gives detailed explanation of these functions. Users can add additional

cryptographic primitives to SANDlog based on their needs.

We can construct a more secure variant of the shortest path protocol by deploying signature

authentication in the rules involving inter-node communications. For example, the following

rule sp2 1 is extended from rule sp2 in Figure 3 with inter-node communication encrypted.

sp2 1 pathp@z, d, c, p, sigq :́

linkp@s, z, c1q, pathp@s, d, c2, p1, sig1 q, c :“ c1` c2, p :“ z::p1,

pubKp@s, d, pkq, f verifypp1, sig1 , pkq “ 1, privKp@s, skq, sig :“ f signpp, skq.

In rule sp2 1, a signature sig for the path becomes an additional argument to the path tuple.

When node s receives such a tuple, it verifies the signature of the path f verifypp1, sig, pkq.

When s sends out a path to its neighbor, it generates a signature by assigning sig :“

f signpp, skq. Here f sign and f verify are user-defined asymmetric cryptographic functions,

Function Description
f sign asym(info, key) Create a signature of info using key
f verify asym(info, sig, key) Verify that sig is the signature of info using key
f mac(info, key) Create a message authentication code of info using key
f verifymac(info, MAC, key) Verify info against MAC using key

Figure 9: Cryptographic functions in SANDlog

20

such as RSA.

The semantics of SANDlog is similar to that of NDLog. The execution of security primitives

is identical to user-defined functions in NDLog.

3.2. A Program Logic for SANDlog

To verify correctness of secure routing protocols encoded in SANDlog, we introduce a pro-

gram logic for SANDlog. The program logic enables us to prove program invariants—that

is, properties holding throughout the execution of SANDlog programs—even if the nodes

running the program interact with potential attackers, whose behaviors are unpredictable.

In our case study, we show that a large number of desirable properties of secure routing

protocols that we are interested in are safety properties and can be proved by introducing

appropriate programs’ invariant properties.

Attacker model. We assume connectivity-bound network attackers, a variant of the

Dolev-Yao network attacker model. The attacker can perform cryptographic operations

with correct keys, such as encryption, decryption, and signature generation, but is not al-

lowed to eavesdrop or intercept packets. This attacker model manifests itself in our formal

system in two places: (1) the network is modeled as connected nodes, some of which run

the SANDlog program that encodes the prescribed protocol and others are malicious and

run arbitrary SANDlog programs; (2) safety of cryptography is admitted as axioms.

Syntax. We use first-order logic formulas, denoted ϕ, as property specifications. The

atoms, denoted A, include predicates and term inequalities. The syntax of the logic formulas

is shown below.

Atoms A ::“ P p~tq@pι, τq | sendpι, tppP, ι1,~tqq@τ | recvpι, tppP,~tqq@τ

| honestpι, prog, τq | t1 bop t2

Formulas ϕ ::“ J |K |A |ϕ1 ^ ϕ2 |ϕ1 _ ϕ2 |ϕ1 Ą ϕ2 | ϕ | @x.ϕ | Dx.ϕ

Variable Ctx Σ ::“ ¨ |Σ, x Logical Ctx Γ ::“ ¨ |Γ, ϕ

Predicate P p~tq@pι, τq means that tuple P p~tq is derived at time τ by node ι. The first

21

Σ; Γ $ ϕ Σ; Γ, ϕ $ ϕ1

Σ; Γ $ ϕ1
Cut

ϕ P Γ
Σ; Γ $ ϕ

Init
Σ; Γ, ϕ $ ¨
Σ; Γ $ ϕ

 I
Σ; Γ $ ϕ
Σ; Γ, ϕ $ ¨

 E

Σ; Γ $ ϕ1 Σ; Γ $ ϕ2

Σ; Γ $ ϕ1 ^ ϕ2
^I

i P r1, 2s,Σ; Γ $ ϕ1 ^ ϕ2

Σ; Γ $ ϕi
^E

i P r1, 2s,Σ; Γ $ ϕi

Σ; Γ $ ϕ1 _ ϕ2
_I

Σ; Γ $ ϕ1 _ ϕ2 Σ; Γ, ϕ1 $ ϕ Σ; Γ, ϕ2 $ ϕ

Σ; Γ $ ϕ
_E

Σ, x; Γ $ ϕ

Σ; Γ $ @x.ϕ
@I

Σ; Γ $ @x.ϕ
Σ; Γ $ ϕrt{xs

@E
Σ; Γ $ ϕrt{xs

Σ; Γ $ Dx.ϕ
DI

Σ; Γ $ Dx.ϕ Σ, a; Γ, ϕra{xs $ ϕ1 a is fresh
Σ; Γ $ ϕ1

DE

Figure 10: Rules in first-order logic.

element in ~t is a location identifier ι1, which may be different from ι. When a tuple

P pι1, ...q is derived at node ι, it is sent to ι1. This send action is captured by predicate

sendpι, tppP, ι1,~tqq@τ . Correspondingly, predicate recvpι, tppP,~tqq@τ denotes that node ι has

received a tuple P p~tq at time τ . A user could determine send and recv tuples by inspecting

rules whose head tuple locates differently from body tuples. For example, the head tuple

pathp@z, d, c, pq in the rule sp2 of the shortest-path program (Figure 3) corresponds to a

tuple sendps, tpppath, z, pz, d, c, pqqq@t in our logic. honestpι, progpιq, τq means that node ι

starts to run program progpιq at time τ . Since predicates take time points as an argument,

we are effectively encoding linear temporal logic (LTL) in first-order logic [45]. The domain

of the time points is the set of natural numbers. Each time point represents the number of

clock ticks from the initialization of the system.

Logical judgments. The logical judgments in our program logic use two contexts: con-

text Σ containing all the free variables; and context Γ containing logical assumptions.

(1) Σ; Γ $ ϕ (2) Σ; Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq

Judgment (1) states that ϕ is provable given the assumptions in Γ. Judgment (2) is an

22

Σ; Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq

@r P rlOfpprogq, pr “ hp~vq :́ p1p~s1q, ..., pmp~smq, q1p~u1q, ..., qnp~unq, a1, ..., akq
Σ; Γ $ @i,@t,@~y, p ~y “ fvprqq

ľ

jPr1,ms
ppjp~sjq@pi, tq^ϕpj pi, t, ~sjqq^

ľ

jPr1,ns
recvpi, tppqj , ~ujqq@t^ Ą ϕhpi, t, ~vq

ľ

jPr1,ks
rajs

@p P hdOfpprogq, ϕp is closed under trace extension
Σ; Γ $ progpiq : ti, yb, yeu.

ľ

pPhdOfpprogq
@t,@~x, yb ď t ă ye ^ pp~xq@pi, tq Ą ϕppi, t, ~xq

Inv

Σ; Γ $ ϕ

Σ; Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq Σ; Γ $ honestpι, progpιq, tq
Σ; Γ $ @t1, t1 ą t, ϕpι, t, t1q

Honest

Figure 11: Rules in program logic

assertion about SANDlog programs, i.e., a program invariant. We write ϕp~xq when ~x are

free in ϕ. ϕp~tq denotes the resulting formula of substituting ~t for ~x in ϕp~xq. Recall that

prog is parametrized over the identifier of the node it runs on. The program invariant

is parametrized over not only the node ID i, but also the starting point of executing the

program (yb) and a later time point ye. Judgment (2) states that any trace T containing

the execution of a program prog by a node ι, starting at time τb, satisfies ϕpι, τb, τeq, for

any time point τe later than τb. Note that the trace could also contain threads that run

malicious programs. Since τe is any time after τb (the time prog starts), ϕ is an invariant

property of prog.

Inference rules. The inference rules of our program logic include all standard first-order

logic ones (e.g. Modus ponens), shown in Figure 10. Reasoning about the ordering between

time points are carried out in first-order logic using theory on natural numbers (in Coq, we

use Omega). We choose first-order logic because it is better supported by proof assistants,

23

such as Coq.

In addition, we introduce two key rules (Figure 11) into our proof system. Rule Inv proves

an invariant property of a program prog. The program invariant takes on a specific form

as the conjunction of all the invariants of the tuples derived by prog, and means that

if any head tuple is derived by prog, then its associated property should hold; formally:

@t,@~x, yb ď t ă ye ^ pp~xq@pi, tq Ą ϕppi, t, ~xq, where p is the name of the head tuple, and

ϕppi, t, ~xq is an invariant property associated with pp~xq. For example, p can be path, and

ϕppi, t, ~xq be that every link in argument path must have existed in the past. In the INV

rule, the function rlOf pprogq returns rules generating derivation tuples for a given program,

and the function fvprq returns all free variables in a given rule.

Intuitively, the premises of Inv need to establish that each derivation rule’s body tuples

and its associative invariants together imply the invariant of the rule’s head tuple. For each

derivation rule r in prog, we assume that the body of r is arranged so that the first m tuples

(i.e. p1p~s1q, ..., pmp~smq) are derived by prog, the next n tuples (i.e. q1p~u1q, ..., qnp~unq) are

received from the network, and constraints (i.e. a1, ..., ak) constitute the rest of the body.

For tuples derived by prog (i.e. pj ’s), we can safely assume that their invariants ϕpj hold

at time t. On the other hand, properties of received tuples (i.e. qj) are excluded from the

premises, as in adversarial environment, these messages are not trusted by default.

Each premise of the INV rule provides the strongest assumption that allows us to prove the

conclusion in that premise. In most cases, arithmetic constraints are enough for proving

the invariant. But in some special cases—for example, the invariant explicitly specifies the

existence of a received tuple—the predicate representing the action of a tuple receipt is

needed in the assumption. In other words, ϕpj is the inductive hypothesis in this inductive

proof. In our case study, we frequently need to invoke the inductive hypothesis to complete

the proof.

We make sure that each tuple in an SANDlog program is either derived locally or received

24

from the network, but not both. For a program that violates this property, the user can

rewrite the program by creating a copy tuple of a different name for the tuple that can

be both derived locally or received from the network. For example, the path tuple in the

shortest-path program in Figure 3 could be both derived locally (rule sp1) and received from

a remote node (rule sp2). The user could rewrite the head tuple path in sp2 to recvPath to

differentiate it from path. In this way, the invariant property associated with the path tuple

can be trusted and used in the proof of the program invariant.

We also require that an invariant ϕp be closed under trace extension. Formally: if T (

ϕpι, t, ~sq and T is a prefix of T 1, then T 1 (ϕpι, t, ~sq. For instance, the property that node ι

has received a tuple p before time t is closed under trace extension, while the property that

node ι never sends p to the network is not closed under trace extension.

We do not allow invariants to be specified over base tuples. The INV rule cannot be used

to derive properties of base rules (e.g., link), because the function rlOf pq only returns rules

for derivation tuples.

As an example, we use INV to prove a simple program invariant of the shortest-path program

in Figure 3. The property is specified as

ϕsp = progpxq : tx, yb, yeu.

p@t,@y,@c,@pt, yb ď t ă ye ^

pathpx, y, c, ptq@px, tq Ą

pDz, c1, linkpx, z, c1q@px, tq _

linkpz, x, c1@pz, tqqq ^

p@t,@y,@c,@pt, yb ď t ă ye ^

bestPathpx, y, c, ptq@px, tq Ą true

Intuitively, ϕsp specifies an invariant property for the path tuple, which says a path tuple

must imply a path tuple to/from the direct neighbor. ϕsp also assigns true as the invariant

property for bestPath tuples. The proof is established using INV (Figure 12). The whole

proof has three premises, each corresponding to a rule in the shortest-path program in

25

Σ; Γ $ @s,@d,@c,@t,
plinkps, d, cq@ps, tq ^ p “ rs, dsq Ą
pDz, c1, linkps, z, c1q@ps, tq _ linkpz, s, c1q@pz, tqq

Σ; Γ $ @s,@d,@c1,@c2,@p1,@z,@t,
plinkps, z, c1q@ps, tq ^ recvps, tpppath, s, d, c2, p1qq@t ^
c “ c1` c2 ^ p “ z::p1q Ą
pDz2, c2, linkpz, z2, c2q@pz, tq _ linkpz2, z, c1q@pz2, tqq

Σ; Γ $ true

Σ; Γ $ ϕsp
Inv

Figure 12: Proof of ϕsp

Figure 3. For example, in the second premise corresponding to sp2, we include the local link

tuple and the received path as well as constraints in the assumption, while leaving out the

invariant property of the path tuple, because a received path tuple should not be trusted in

an adversarial environment.

The Honest rule proves properties of the entire system based on the program invariant. If

ϕpi, yb, yeq is the invariant of prog, and a node ι runs the program prog at time tb, then

any trace containing the execution of this program satisfies ϕpι, tb, teq, where te is a time

point after tb. SANDlog programs never terminate: after the last instruction, the program

enters a stuck state. The Honest rule is applied to honest principles (nodes) that execute

the prescribed protocols. The invariant property of an honest node holds even when it

interacts with other malicious nodes in the network, which is required by the soundness of

the inference rules, as explained below.

Soundness. We prove the soundness of our logic with regard to the trace semantics. First,

we define the trace-based semantics for our logic and judgments in Figure 13. Different from

semantics of first-order logic, in our semantics, formulas are interpreted on a trace T . We

26

T (P p~tq@pι, τq iff Dτ 1 ď τ , C is the configuration on T prior to time τ 1,
pι,Ψ,U , progpιqq P C, at time τ 1, pι,Ψ,U , progpιqq ãÑ pι,Ψ1,U 1 ˝ Uin, progpιqq,Ue,
and either P p~tq P Uin or P p~tq P Ue
T (sendpι, tppP, ι1,~tqq@τ iff C is the configuration on T prior to time τ ,
pι,Ψ,U , progpιqq P C, at time τ , pι,Ψ,U , progpιqq ãÑ S 1,Ue and P p@ι1,~tq P Ue

T (recvpι, tppP,~tqq@τ iff Dτ 1 ď τ , C τ 1
ÝÑ C1 P T ,

Q is the network queue in C, P p~tq P Q, pι,Ψ,U , progpιqq P C1 and P p~tq P U
T (honestpι, progpιq, τq iff at time τ , node ι’s local state is (ι, [], [], prog (ι))
Γ (progpiq : ti, yb, yeu.ϕpi, yb, yeq iff Given any trace T such that T (Γ,

and at time τb, node ι’s local state is (ι, [], [], progpιq)
given any time point τe such that τe ě τb, it is the case that T (ϕpι, τb, τeq

Figure 13: Trace-based semantics

elide the rules for first-order logic connectives. A tuple P p~tq is derivable by node ι at time

τ , if P p~tq is either an internal update or an external update generated at a time point τ 1

no later than τ . A node ι sends out a tuple P pι1,~tq if that tuple was derived by node ι.

Because ι1 is different from ι, it is sent over the network. A received tuple is one that comes

from the network (obtained using DeQueue). Finally, an honest node ι runs prog at time τ ,

if at time τ and the local state of ι at time τ is the initial state with an empty table and

update queue.

The semantics of invariant assertion states that if a trace T contains the execution of prog

by node ι (formally defined as the node running prog is one of the nodes in the configuration

C), then given any time point τe after τb, the trace T satisfies ϕpι, τb, τeq. Here, the semantic

definition requires that the invariant of an honest node holds in the presence of attackers,

because we examine all traces that include the honest node in their configurations. This

means that those traces can contain arbitrary other nodes, some of which are malicious.

Our program logic is proven to be sound with regard to the trace semantics:

Theorem 1 (Soundness). 1. If Σ; Γ $ ϕ, then for all grounding substitution σ for Σ,

given any trace T , T (Γσ implies T (ϕσ;

2. If Σ; Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq, then for all grounding substitution σ for Σ,

Γσ (pprogqσpiq : ti, yb, yeu.pϕpi, yb, yeqqσ.

27

Proof. By mutual induction on the derivation E . The rules for standard first-order logic

formulas are straightforward. We focus on the case when E ends in the Honest rule.

Case: The last step of E is Honest.

E =

E1 :: Σ; Γ $ progpiq : ti, yb, yeu.ϕpi, yb, yeq E2 :: Σ; Γ $ honestpι, progpιq, tq

Σ; Γ $ @t1, t1 ą t, ϕpι, t, t1q
Honest

Given σ, T s.t. T (Γσ, by I.H. on E1 and E2

(1) Γσ (pprogqσpiq : ti, yb, yeu.pϕpi, yb, yeqqσ

(2) T (phonestpι, progpιq, tqqσ

By (2),

(3) at time tσ, ισ starts to run program (pprogqσ)

By (1) and (3), given any T s.t. T ą tσ

(4) T (ϕσpισ, tσ, T q

Therefore,

(5) T (p@t1, t1 ą t, ϕpι, t, t1qqσ

Case: E ends in Inv rule.

Given T , σ such that T (Γσ, and at time τb, node ι’s local state is (ι, [], [], progpιq),

given any time point τe such that τe ě τb,

let ϕ “ p
Ź

pPhdOfpprogq @t,@~x, τb ď t ă τe ^ pp~xq@pι, tq Ą ϕppι, t, ~xqqσ

we need to show T (ϕ

By induction on the length of T

subcase: |T | “ 0, T has one state and is of the form τ
ÝÑ C

By assumption (ι, [], [], rprogsι) P C

Because the update list is empty, Eσ1, s.t. T (ppp~xq@pι, tqqσσ1

Therefore, T (ϕ trivially.

subcase: T “ T 1 τÝÑ C

We examine all possible steps allowed by the operational semantics.

To show the conjunction holds, we show all clauses in the conjunction are true by

28

construct a generic proof for one clause.

case: DeQueue is the last step.

Given a substitution σ1 for t and ~x s.t. T (pτb ď t ă τe ^ pp~xq@pι, tqqσσ1

By the definitions of semantics, and DeQueue merely moves messages around

(1) ppp~xqqσσ1 is on trace T 1

(2) T 1 (pτb ď t ă τe ^ pp~xq@pι, tqqσσ1

By I.H. on T 1,

(3) T 1 (p@t,@~x, τb ď t ă τe ^ pp~xq@pι, tq Ą ϕppι, t, ~xqqσ

By (2) and (3)

(4) T 1 (ϕppι, t, ~xqσσ1

By ϕp is closed under trace extension and (4),

T (ϕppι, t, ~xqσσ1

Therefore, T (ϕ by taking the conjunction of all the results for such p’s.

case: NodeStep is the last step. Similar to the previous case, we examine every tuple

p generated by prog to show T (ϕ. When p was generated on T 1, the proof

proceeds in the same way as the previous case. We focus on the cases where p is

generated in the last step.

We need to show that T (p@t,@~x, τb ď t ă τe ^ pp~xq@pι, tq Ą ϕppι, t, ~xqqσ

Assume the newly generated tuple is ppp~xq@pι, τpqqσσ1, where τp ě τ

We need to show that T (pϕppι, τp, ~xqqσσ1

subcase: Init is used

In this case, only rules with an empty body are fired (r “ hp~vq :́ .).

By expanding the last premise of the Inv rule, and ~v are all ground terms,

(1) E1 :: Σ; Γ $ @i,@t, ϕhpi, t, ~vq

By I.H. on E1

(2) T (p@i,@t, ϕhpi, t, ~vqqσ

29

By (2)

T (pϕhpι, τp, ~yqqσσ1

subcase: RuleFire is used.

We show one case where p is not an aggregate and one where p is.

subsubcase: InsNew is fired

By examine the ∆r rule,

(1) exists σ0 P ρpΨν ,Ψ, r, k, ~sq such that ppp~xq@pι, tqqσσ1 “ ppp~vq@pι, tqqσ0

(2) for tuples (pj) derived by node ι, ppjp~sjqqσ0 P Ψν or ppjp~sjqqσ0 P Ψ

By operational semantics, pj must have been generated on T 1

(3)T 1 (ppjp~sjq@pι, τpqqσ0

By I.H. on T 1 and (3), the invariant for pj holds on T 1

(4) T 1 (pϕpj pι, τp, ~sjqqσ0

By ϕp is closed under trace extension

(5) T (ppjp~xjq@pι, τpq ^ ϕpj pι, τp, ~sjqqσ0

For tuples (qj) that are received by node ι, using similar reasoning as above

(6) T (precvpi, tppqj , ~sjqq@τpqσ0

(7) For constraints (aj), T (ajσ0

By I.H. on the last premise in Inv and (5) (6) (7)

(8) T (pϕppi, τp, ~vqqσ0

By (1) and (8), T (pϕppi, τp, ~yqqσσ1

subsubcase: InsAggNew is fired.

When p is an aggregated predicate, we additionally prove that

every aggregate candidate predicate pagg has the same invariant as p.

That is (1) T (p@t,@~x, τb ď t ă τe ^ paggp~xq@pι, tq Ą ϕppι, t, ~xqqσ

The reasoning is the same as the previous case.

We additionally show that (1) is true on the newly generated paggp~tq.

30

The intuition behind the soundness proof is that the invariant properties ϕp specified for

the predicate p are local properties that will not be affected by the attacker. For instance,

we can specify basic arithmetic constraints of arguments derived by the honest node and

the existence of base tuples. These invariants can be checked by examining the program of

the honest node and are not affected by how the honest node interacts with the rest of the

nodes in the network. We never use any invariant of received tuples, because they could

be sent from an attacker, and the attacker does not need to generate those tuples following

protocols. However, we can use the fact that those received tuples must have arrived at the

honest node; otherwise, the rule will not fire. In other words, we trust the runtime of an

honest node.

Discussion. Our program logic enables us to prove invariant properties that hold even in

adversarial environment. The network trace T in Theorem 1 could involve attacker threads

who run arbitrary malicious programs. For example, a trace may contain attacker threads

who keep propagating invalid route advertisement for a non-existent destination. Properties

proved with our logic, however, still hold in such traces. The key observation here is that in

the rule inv, the correctness of the program property does not rely on received tuples, which

could have been manipulated by malicious attackers. This guarantee is further validated

by our logic semantics and soundness, where we demand that a proved conclusion should

hold in any trace.

Our program logic could possibly prove false program invariants for SANDlog programs

only generating empty network traces. An example program is as follows:

r1 pp@aq :́ qp@aq.

r2 qp@aq :́ pp@aq.

A user could assign false to both p and q, and prove the program invariant with the rule inv.

However, this program, when executing in bottom-up evaluation, produces an empty set of

31

tuples. The inv rule is still sound in this case as there is no trace that generates tuples p

and q. Instead, a SANDlog program should have rules of the form “p :-” to generate base

tuples. If a false program invariant is given for such a program, the user is obliged to prove

$ false in the logic, which is impossible.

3.3. Verification Condition Generator

Our prototype implementation is built on top of RapidNet [59], a declarative networking

engine. RapidNet takes a SANDlog program as input, rewrites each rule into a set of ∆

rules (see Section 2.1.2), and compiles each ∆ rule into a series of relational operators, such

as projection, selection and join.

We augmented RapidNet with libraries handling cryptographic functions. We also equipped

RapidNet with a verification condition generator (VCG), which extracts proof obligations

from SANDlog programs into Coq’s logic (i.e., shallow embedding). We could target other

interactive theorem provers such as Isabelle HOL as well.

Library extensions to RapidNet are implemented similarly to those described in prior

work [93]. Thus, we focus on describing the implementation of VCG, which generates

lemmas corresponding to the last premise of the rule Inv. VCG takes as input, the abstract

syntax tree of a SANDlog program sp and its user-defined type annotation tp, and outputs

a Coq file that contains (1) definitions for types, predicates, and functions; (2) lemmas for

rules in the SANDlog program; and (3) axioms based on Honest rule. The annotation tp is

supposed to be provided by the programmer, and contains typing information of the form

parg : typeq, for all arguments in relations and functions. tp is necessary for VCG, because

SANDlog is untyped. Next we illustrate the process of shallow embedding in detail.

Generating definitions. VCG uses Algorithm 1 to generate four kinds of definitions:

types, predicates, functions and invariant properties. VCG scans through the types in the

type annotation file and inserts one type definitions for each distinct type (lines 4 – 9). For

instance, given pIPAddress : stringq in the annotation, VCG generates Variable string: Type.

32

Definition for the type time is hard-coded .

Lines 10 to 20 generate definitions for relations. For each distinct relation name p in a

SANDlog program, we define a predicate of the same name, whose arguments are composed

of the arguments of p, a node identifier, and a time point. For example, with linkp@n,mq and

the type annotation:(n:string) (m:string), VCG outputs the following predicate definition. It

represents the predicate linkpn,mq@pn, tq.

Variable link: string Ñ string Ñ string Ñ time Ñ Prop.

Lines 21 to 29 generate definitions for user-defined functions. For each user-defined func-

tion, we define a data constructor of the same name, unless it corresponds to a Coq’s

built-in operator. We also include a time point as an additional argument. For exam-

ple, VCG generates the following definition for f signpinfo, keyq with typing information:

(info:string)(key:string) (f signpq:string).

Variable fsign: string Ñ string Ñ time Ñ string.

VCG also defines a skeleton for invariant properties of the relations in each rule head (lines

30 – 38). The arguments of an invariant property are the same as those in the relation, plus

a location specifier and a time point. VCG generates a question mark as the place holder for

the concrete definition of the invariant properties, which will be provided by the user. As an

example, consider the rule head of sp1 in Figure 3 of Chapter 2. The invariant property of

the relation path(@s, d, c, p), with typing information (s:string) (d:string) (c:nat)(p:string),is

defined as follows:

Definition p-path: (attr 0:string)(attr 1:string)(attr 2:nat)(attr 3:string)

(loc:string)(t:time): Prop:=?

Generating lemma statements. Let us use the program in Figure 3 of Chapter 2 as

an example. The lemma generated for sp1 is shown below, where p-path represents the

33

invariant associated with the path tuple. Next we explain how it is generated in detail. The

pseudo-code is shown in Algorithm 2. The algorithm writes to a Coq file using the keyword

Write. All the arguments to Write are strings. For simplicity, we omit the double quotes

around strings and string operations.

Lemma r1: forall(s:node)(d:node)(c:nat)(p:list node)(t:time),

link s d c s t Ñ p = cons (s (cons d nil)) Ñ p-path s t s d c p t.

VCG first fetches a rule (lines 5 – 6). Next, it generates a unique name for the lemma and

universal quantification of free variables in that rule (lines 7 – 11). In this phase, VCG

generates the first line of the lemma shown above, assuming the annotated sp1 is:

pathp@ps : nodeq, pd : nodeq, pc : natq, pp : list[node]qq :́ linkp@s, d, cq, p :“ rs, ds.

Next, VCG processes the rule body by applying the function ParsingBody (lines 20 – 38)

to each element in it. Elements are separated by commas. The input to ParsingBody

is either a relation, an assignment, or a binary operation. When processing a relation,

VCG generates (1) the predicate that corresponds to the relation (lines 22 – 25) and (2)

the invariant associated with the relation (lines 26 – 31). For assignments and binary

operations, VCG translates them into corresponding operations in Coq (lines 32 – 37).

ParseBody function uses ParsingTerm (Algorithm 3) to process expressions in the body

elements. There are four forms of expressions: variables, constances, functions, and arith-

metic operations. A variable or constance is translated as it is (lines 2 – 5). A function (lines

6 – 15) can either have a correspondent in Coq libraries or be defined by VCG; VCG gener-

ates the definition for a function only when no correspondent can be found in Coq libraries.

For the former case, VCG translates the function into the corresponding form in Coq (e.g.

f removeFirstplq ñ tlplq); for the latter one, VCG simply applies the defined function to

the function arguments (e.g. f signpinfo, keyq ñ f sign info key t). In both cases, each

argument itself is an expression, and is processed recursively with ParsingTerm. As an

example, the second line of Lemma r1 before p-path is the result of processing the rule body

34

of sp1.

Finally, VCG generates the conclusion of the lemma – which is the invariant associated with

the rule head (lines 14 – 18) – and complete the translation process. Users can instruct

VCG to generate multiple sets of lemmas over the same SANDlog program, if there are

multiple invariants to be proved.

Axioms. For each invariant ϕp of a rule head p, VCG produces an axiom (Algorithm 4) , in

the form @i, t, ~x,Honestpiq Ą pp~xq@pi, tq Ą ϕppi, ~xq, where Honestpnq fi honestpn, prog,´8q.

For example, consider the rule sp1 in Figure 3 of Chapter 2. The corresponding axiom

generated by VCG is as follows:

Axiom geneProp-path: (attr 0:string)(attr 1:string) (attr 2:nat)

(attr 3:string)(loc:string)(t:time),

Honest loc Ñ path attr 0 attr 1 attr 2 attr 3 loc t Ñ

p-path attr 0 attr 1 attr 2 attr 3 loc t.

These axioms are conclusions derived from the Honest rule after invariants are verified.

Soundness of these axioms is backed by the soundness theorem (Theorem 1). Since we

always assume that the program starts at time ´8, the condition that t ą ´8 is always

true, thus omitted.

3.4. Case Studies

In this section, we investigate two proposed secure routing solutions: S-BGP (Section 3.4.1)

and SCION (Section 3.4.2). We encode both solutions in SANDlog and prove that they

preserve route authenticity, a key property stating that route announcements are trust-

worthy. Our case studies not only demonstrate the effectiveness of our program logic, but

provide a formal proof supporting the informal guarantees given by the solution designers.

Interested readers can find SANDlog specification and formal verification of both solutions

35

Algorithm 1 Generate Proof Obligation – Definitions
1: function GeneDefition(sp, tp)
2: (* sp: SANDlog program *)
3: (* tp: Type annotation *)
4: (* time is a type *)
5: Write Definition time := nat.
6: (* Type definition *)
7: for all pv : typeq P tp do
8: if “Variable type” not defined then
9: Write Variable type: Type.

10: (* Predicate definition *)
11: Write Variable Honest: string Ñ Prop.
12: for all pp@ι, ~xq P sp do
13: if “Variable p” not defined then
14: Write Variable p:
15: id type1 Ð tppιq
16: Write id type1 Ñ
17: for all arg P ~x do
18: type1 Ð tppargq
19: Write type1 Ñ
20: Write id type1 Ñ timeÑ Prop.

21: (* Function definition *)
22: for all pf namep~yqq P sp do
23: if f name has no correspondents in Coq library &
24: “Variable f name” not defined then
25: Write Variable f name:
26: for all arg P ~y do
27: type2 Ð tppargq
28: Write type2 Ñ
29: type3 Ð tppf namep~yqq
30: Write type3.
31: (* Invariant definition *)
32: for all pp@ι, ~xq P HeadTuplepspq do
33: Write Definition p-p:
34: id type1 Ð tppιq
35: Write (attr 0 : type1)
36: for iÐ 1, lenp~xq do
37: type1 Ð tpp~xpiqq
38: Write (attr i : type1)
39: Write ploc : id type1qpt : timeq : Prop :“?
40: end function

36

Algorithm 2 Generate Proof Obligation – Lemma statements.
1: function GeneLemma(sp, tp)
2: (* sp: SANDlog program *)
3: (* tp: Type annotation *)
4: for iÐ 1,NumberOfRulespspq do
5: pH :́ bodyq Ð Rulespspqpiq
6: Where H “ php@ι1, ~yq
7: Write Lemma ri: forall
8: (* Quantify variables *)
9: for all arg P fvpH, bodyq do

10: type1 Ð tppargq
11: Write (arg:type)
12: for all ele P body do
13: ParsingBody(ele)
14: Write p-ph
15: for all arg P ~y do
16: ParsingTerm(arg)
17: (* add node id and time as arguments *)
18: Write ι t.
19: end function

20: function ParsingBody(body piece)
21: if body piece = pp@ι, ~xq then
22: Write pred p
23: for all arg P pι, ~xq do
24: ParsingTerm(arg)
25: Write ι t Ñ
26: if pp@ι, x̃q P HeadTuplepspq &
27: pp@ι, ~xq not a received tuple then
28: Write prop p
29: for all arg P pι, ~xq do
30: ParsingTerm(arg)
31: Write ι t Ñ
32: else if body piece = (a :“ b) or
33: (a bop b) then
34: ParsingTerm(a)
35: if a :“ b then Write =
36: else Write bop
37: ParsingTerm(b)
38: end function

Algorithm 3 Generate Proof Obligation – Function ParsingTerm()
1: function ParsingTerm(exp)
2: if exp is variable x then
3: Write x
4: else if exp is constance c then
5: Write “c”
6: else if exp “ fnamep~yq then
7: if fname is defined then
8: Write “fname ”
9: for all arg P ~y do

10: ParsingTerm(arg)
11: Write tÑ ”
12: else
13: Write Corresponding built-in Coq function
14: for all arg P ~y do
15: ParsingTerm(arg)
16: end function

online (http://netdb.cis.upenn.edu/secure_routing/.)

3.4.1. S-BGP

Secure Border Gateway Protocol (S-BGP) [75] is a comprehensive solution that aims to

eliminate security vulnerabilities of BGP, while maintaining compatibility with original

BGP specifications. S-BGP requires that each node sign the route information (route

attestation) using asymmetric encryption (e.g. RSA [73]) before advertising the message

37

http://netdb.cis.upenn.edu/secure_routing/

Algorithm 4 Generate Proof Obligation – Axioms
1: function GeneAxiom(sp, tp)
2: (* sp: SANDlog program *)
3: (* tp: Type annotation *)
4: (* Invariant definition *)
5: for all pp@ι, ~xq P HeadTuplepspq do
6: Write Axiom geneProp-p:forall
7: Where pι : id type1q P tp
8: Write (attr 0 : type1)
9: for iÐ 1, lenp~xq do

10: Where p~xpiq : type1q P tp
11: Write (attr i:type’)
12: Write ploc : id type1qpt : timeq,
13: Write pred-p
14: for iÐ 0, lenp~xq do
15: Write attr i
16: Write loc t Ñ
17: Write Honest loc Ñ
18: Write p-p
19: for iÐ 0, lenp~xq do
20: Write attr i
21: Write loc t.
22: end function

to its neighbor. The route information is supposed to include the destination address

(represented by an IP prefix), the known path to the destination, and the identifier of the

neighbor to whom the route information will be sent. The sender also attaches a signature

list to the route information, containing all signatures received from the previous neighbors.

A node receiving the route attestation would not trust the routing information unless all

signatures inside are properly checked.

Encoding. Figure 14 presents our encoding of S-BGP in SANDlog. The meaning of tuples

in the program can be found in Figure 15.

In rule r1 of Figure 14, when a node N receives an advertise tuple from its neighbor Nb, it gen-

erates a verifyPath tuple, which serves as an entry point for recursive signature verification.

In rule 2, N recursively verifies all signatures in Osl, which stands for “original signature

list”. Sl in verifyPath is a sub-list of Osl, representing the signatures that have not been

38

r1 verifyPath(@N,Nb,Pfx,Pvf,
Sl,OrigP,Osl) :-

advertise(@N,Nb,Pfx,RcvP,Sl),
link(@N,Nb),
Pvf := f_prepend(N,RcvP),
OrigP := Pvf,
Osl := Sl,
f_member(RcvP,N) == 0,
Nb == f_first(RcvP).

r2 verifyPath(@N,Nb,Pfx,PTemp,
Sl1,OrigP,Osl) :-

verifyPath(@N,Nb,Pfx,Pvf,
Sl,OrigP,Osl),

publicKeys(@N,Nd,PubK),
f_size(Sl) > 0,
f_size(Pvf) > 1,
PTemp := f_removeFirst(Pvf),
Nd := f_first(PTemp),
SigM := f_first(Sl),
MsgV := f_prepend(Pfx,Pvf),
f_verify(MsgV,SigM,PubK) == 1,
Sl1 := f_removeFirst(Sl).

r3 route(@N,Pfx,C,OrigP,Osl) :-
verifyP(@N,Nd,Pfx,Pvf,

Sl,OrigP,Osl),
f_size(Sl) == 0,
f_size(Pvf) == 1,
C:= f_size(OrigP) - 1.

r4 route(@N,Pfx,C,P,Sl) :-
prefixs(@N,Pfx),
List := f_empty(),
C := 0,
P := f_prepend(N,List),
Sl := f_empty().

r5 bestRoute(@N,Pfx,a_MIN<C>,P,Sl) :-
route(@N,Pfx,C,P,Sl).

r6 signature(@N,Msg,Sig) :-
bestRoute(@N,Pfx,C,BestP,Sl),
privateKeys(@N,PriK),
link(@N,Nb),
Pts := f_prepend(Nb,BestP),
Msg := f_prepend(Pfx,Pts),
Sig := f_sign(Msg,PriK).

r7 advertise(@Nb,N,Pfx,BestP,NewSl) :-
bestRoute(@N,Pfx,C,BestP,Sl),
link(@N,Nb),
Pts := f_prepend(Nb,BestP),
Msg == f_prepend(Pfx,Pts),
signature(@N,Msg,Sig),
NewSl := f_prepend(Sig,Sl).

Figure 14: S-BGP encoding

checked. When all signatures have been verified — this is ensured by “f sizepSlq ““ 0” in

rule 3 — N accepts the route and stores the path as a route tuple in the local database. Rule

4 also allows N to generate a route tuple storing the path to its self-owned IP prefixes (i.e.

prefixp@N,Pfxq). Given a specific destination Pfx, in rule 5, N aggregates all route tuples

storing paths to Pfx, and computes a bestPath tuple for the shortest path. The bestPath

is intended to be propagated to downstream ASes. Before propagation, however, S-BGP

requires N to sign the path information. This is captured in rule 6, where N uses its private

key (i.e. privateKeysp@N,PriKq) to generate a signature based on the selected bestPath tuple.

Finally, in rule 7, N embeds the routing information (i.e. bestPath) along with its signature

(i.e. signature) into a new route advertisement (i.e. advertise), and propagates the message

to its neighbors.

39

linkp@n, n1q there is a link between n and n1.
routep@n, d, c, p, slq p is a path to d with cost c.

sl is the signature list associated with p.
prefixp@n, dq n owns prefix (IP addresses) d.
bestRoutep@n, d, c, p, slq p is the best path to d with cost c.

sl is the signature list associated with p.
verifyPathp@n, n1, d, p, sl, a path p to a destination d is verified against signature list sl.

pOrig, sOrigq p is a sub-path of pOrig, and s is a sub-list of sOrig.
signaturep@n,m, sq n creates a signature s of message m with private key.
advertisep@n1, n, d, p, slq n advertises path p to neighbor n1 with signature list sl.

Figure 15: Tuples for progsbgp

Property specification. Route authenticity of S-BGP ensures that no route announce-

ment can be tampered with by an attacker. In other words, it requires that any route

announcement accepted by a node is authentic. We encode it as ϕauth1 below.

ϕauth1 =@n,m, t, d, p, sl,

Honestpnq ^ advertisepm,n, d, p, slq@pn, tq Ą goodPathpt, d, pq

ϕauth1 is a general topology-independent security property. It asserts that whenever an

honest node n, denoted as Honestpnq, sends out an advertise tuple to its neighbor m, the

property goodPathpt, d, pq holds. Honestpnq means that n runs S-BGP and n’s private key is

not compromised. Formally:

Honestpnq fi honestpn, progsbgppnq,´8q.

Here, the starting time is set to be the earliest possible time point. SANDlog’s semantics

allows a node to begin execution at any time after the specified starting time, so using

´8 gives us the most flexibility. goodPathpt, d, pq is recursively defined in Figure 16, which

asserts that all links in the path p towards the destination d exist no later than t. Each

link (m, n) is represented by two tuples: link(@n, m) and link(@m, n). These two tuples

reside on two endpoints respectively.

To be more specific, the definition of goodPathpt, d, pq involves three cases (Figure 16). The

base case is when p contains only one node. We require that d be one of the prefixes owned

40

Honestpnq Ą Dt1, t1 ď t ^ prefixpn, dq@pn, t1q
goodPathpt, d, n :: nilq

Honestpnq Ą Dt1, t1 ď t ^ linkpn, n1q@pn, t1q goodPathpt, d, n :: nilq
goodPathpt, d, n1 :: n :: nilq

Honestpnq Ą Dt1, t1 ď t ^ linkpn, n1q@pn, t1q ^ Dt2, t2 ď t ^ linkpn, n2q@pn, t2q
goodPathpt, d, n :: n2 :: p2q

goodPathpt, d, n1 :: n :: n2 :: p2q

Figure 16: Definitions of goodPath

by n (i.e., the prefix tuple is derivable). When p has two nodes n1 and n, we require that

the link from n to n1 exist from n’s perspective, assuming that n is honest, but impose no

constraint on n1’s database, because n1 has not received the advertisement. The last case

is when the length of p is larger than two; we check that both links (from n to n1 and from

n to n2) exist from n’s perspective, assuming n is honest. In the last two rules, we also

recursively check that the subpath also satisfies goodPath.

goodPath can serve as a template for a number of useful properties. For example, by substi-

tuting link (n,n2) with announce link (n, n2), we are able to express whether a node is willing

to let its neighbor know of that link. We can also require each subpath be authorized by

the sender.

Axiom of signature. To use the authenticity property of signatures in the proof of

ϕauth1, we include the following axiom Asig in the logical context Γ. This axiom states that

if a signature s is verified by the public key of a node n1, and n1 is honest, then n1 must

have generated a signature tuple. Predicate verifypm, s, kq@pn, tq means that node n verifies,

using key k at time t, that s is a valid signature of message m.

Asig = @m, s, k, n, n1, t, verifypm, s, kq@pn, tq ^ publicKeyspn, n1, kq@pn, tq ^

Honestpn1q Ą Dt1, t1 ă t ^ signaturepn1,m, sq@pn1, t1q

41

Verification. Our goal is to prove that ϕauth1 is an invariant property that holds on all

possible execution traces. However, directly proving ϕauth1 is hard, as it involves verification

over all the traces. Instead, we take the indirect approach of using our program logic to prove

a program invariant, which is stronger than ϕauth1, and, more importantly, whose validity

implies the validity of ϕauth1. To be concrete, we show that progsbgp has the following

invariant property ϕI :

(a) ¨; ¨ $ progsbgppiq : ti, yb, yeu.ϕIpi, yb, yeq

where ϕI is defined as:

ϕIpi, yb, yeq “
Ź

pPhdOfpprogsbgpq
@t ~x, yb ď t ă ye ^ pp~xq@pi, tq Ą ϕppi, t, ~xq

Every ϕp in ϕI denotes the invariant property associated with each head tuple in progsbgp,

and needs to be specified by the user. Table 1 gives the invariants associated with all head

tuples in the program. Especially, the invariant associated with the advertise tuple (goodPath)

is the same as the conclusion of ϕauth1.

We prove (a) using the inv rule in Section 3.2, by showing that all the premises hold. The inv

rule has two types of premises: (1) Premises that ensure each rule of the program maintains

the invariant of its rule head; and (2) Premises that ensure all invariants for head tuples are

closed under trace extension. Premises of the second type are guaranteed through manual

inspection of all the invariants, thus omitted in the formal proof. In terms of premises of the

first type, since progsbgp has seven rules, this corresponds to seven premises to be proved.

For example, the premise corresponding to rule 2 is represented by (a0), shown below.

42

Rule Head Tuple Invariant
r1,r2 verifyPath (N,Nb,Pfx,Pvf, Dl,Osl “ l``Pvf ^

Sl,OrigP,Osl)@(N,t) pgoodPathpt,Pfx,Pvfq Ą goodPathpt,Pfx,Oslqq
r3,r4 route (N,Pfx,C,OrigP,Osl)@(N,t) goodPath (t,Pfx,OrigP)

r5 bestRoute (N,Pfx,C,P,Sl)@(N,t) goodPath (t,Pfx,OrigP)
r6 signature (N,Msg,Sig)@(N,t) Dp,m, pfx,Msg “ pfx :: nei :: p
r7 advertise (Nb,N,Pfx,BestP,NewSl) goodPath (t,Pfx,Nb::BestP)

Table 1: Tuple invariants in ϕI for S-BGP route authenticity

(a0) ¨; ¨ $ @N,@Nb,@Pfx,@Pvf,@Sl,@Sl1,@OrigP,@Osl,@t,@Nd,

@PubK,@m,@p,@SigM,@MsgV,@PTemp,@Osl,

verifyPathpN,Nb,Pfx,Pvf,SL,OrigP,Oslq@pN,tq ^

Dl,Osl “ l``Sl ^

pgoodPathpt,Pfx,Pvfq Ą goodPathpt,Pfx,Oslqq ^

publicKeyspN,Nd,PubKq@pN,tq ^

lengthpSlq ą 0 ^

lengthpPvfq ą 0 ^

Pvf “ m :: Nd :: p ^

PTemp “ Nd :: p ^

Sl “ SigM :: Sl1 ^

MsgV “ Pfx :: Pvf ^

verifypMsgV,SigM,PubKq@pN,tq Ą

pDl,Osl “ l``Sl1 ^

pgoodPathpt,Pfx,PTempq Ą goodPathpt,Pfx,Oslqqq

Here, pDl,Osl “ l``Sl1 ^ pgoodPathpt,Pfx,PTempq Ą goodPathpt,Pfx,Oslqqq is the invariant

of rule 2’s head tuple verifyPath (Figure 1). Other rule-related premises are constructed in

a similar way. We prove all the premises in Coq, thus proving (a).

After (a) is proved, by applying the Honest rule to (a), we can deduce ϕ “ @n t,Honestpnq Ą

ϕIpn, t,´8q. ϕI can then be injected into the assumptions (Γ) by VCGen (as do ϕI1) and

is safe to be used as a theorem in proving other properties. Finally, ϕauth1 is proved by

43

discharging ϕ Ą ϕauth1 in Coq with standard elimination rules.

Proof details. Among the others, the premise corresponding to rule 2 in the program

turns out to be the most challenging one, as it involves recursion and signature verification.

Recursion in rule 2 makes it hard to find the proper invariant specification for the head tuple

verifyPath, as the invariant needs to maintain correctness for both the head tuple and the

body tuple, which have different arguments. In our specification, we specify the invariant in

a way that reversely verify the signature list by checking the signature for the longest path

first. More concretely, we use an implication, stating that if the path to be verified satisfies

the invariant goodPath, then the entire path satisfies the invariant goodPath (Table 1).

Another challenge in proving the invariant for verifyPath is to reason about the existence

of link tuples at the previous nodes. We solve the problem in two steps: (1) we prove a

stronger auxiliary program invariant (a1), which asserts the existence of the local link tuple

when a node signs the path information. (2) we then use the axiom Asig to allow a node

who verifies a signature to assure the existence of the link tuple at the remote node who

signs the signature.

More concretely, (a1) is defined as:

(a1) ¨; ¨ $ progsbgppiq : ti, yb, yeu.ϕI1

In (a1), all head tuples p other than signature and advertise takes on the same invariant

ϕlink1pp, n, d, tq:

ϕlink1pp, n, d, tq “ Dp
1,

p “ n :: p1 ^ pp1 “ nil Ą prefixpn, dq@pn, tqq ^

@p2,m1, p1 “ m1 :: p2 Ą linkpn,m1q@pn, tq

It states that node n is the first element in path p, and the link tuple from n to its neighbor

in p exists in n’s database.

44

For signature and advertise, we introduce another property:

ϕlink2pp, n, d, n
1, tq= linkpn, n1q@pn, tq ^

Dp1, p “ n :: p1 ^ pp1 “ nil Ą prefixpn, dq@pn, tqq ^

@p2,m1, p1 “ m1 :: p2 Ą linkpn,m1q@pn, tq

ϕlink2pp, n, d, n
1, tq extends ϕlink1pp, n, d, tq by including the receiving node n1 as an argument,

asserting that the link between n and n1 also exists. And the invariants of signature and

advertise are:

ϕsignaturepi, t, n,m, sq “ Dn
1, d,m “ d :: n1 :: p ^ ϕlink2pp, n, d, n

1, tq

ϕadvertisepi, t, n
1, n, d, p, slq “ ϕlink2pp, n, d, n

1, tq

We prove (a1) using the Inv rule. Then, by applying Honest rule to (a1) and only keeping

the clause in ϕI2 related to signature, we derive the following:

(a2) ¨; ¨ $ @n,@t,@m,

Honestpnq ^ signaturepn,m, sq@pn, tq Ą

Dn1, d, pm “ d :: n1 :: p ^ ϕlink2pp, n, d, n
1, tq

(a2) connects an honest node’s signature to the existence of related link tuples at a previous

node in the path p.

Next, we use (a2) along with Asig to prove (a0). Applying Asig to tuples publicKeys and verify

in (a0), we can get:

(a3) ¨; ¨ $ @Nd,@MsgV,@SigM,@t,

HonestpNdq Ą Dt’, t’ ă t ^ signaturepNd, MsgV,SigMq@pNd,t’q

We further apply (a2) to (a3) to obtain:

(a4) ¨; ¨ $ @Nd,@t,@MsgV,

Dn1, d, p,Nd “ d :: n1 :: p ^ ϕlink2pp,Nd, d, n1, tq

Combining (a4) and the assumptions in (a0), we are able to prove the conclusion of (a0).

Other premises can be proved similarly. For non-recursive rules, the premises for them are

45

Honestpnq Ą Dt1, t1 ď t ^ prefixpn, dq@pn, t1q
goodPath2pt, d, n :: nilq

Honestpnq Ą Dt1, c, s, t1 ď t ^ linkpn, n1q@pn, t1q ^ routepn, d, c, n :: nil, slq@pn, t1q
goodPath2pt, d, n :: nilq

goodPath2pt, d, n1 :: n :: nilq

Honestpnq Ą Dt1, t1 ď t ^ linkpn, n1q@pn, t1q ^
Dt2, c, s, t2 ď t ^ linkpn, n2q@pn, t2q ^
routepn, d, c, n :: n2 :: p2, slq@pn, t1q

goodPath2pt, d, n :: n2 :: p2q
goodPath2pt, d, n1 :: n :: n2 :: p2q

Figure 17: Definitions of goodPath2

straightforward. The detailed proof can be found online.

Discussion. ϕauth1 is a general template for proving different kinds of route authenticity.

For example, S-BGP satisfies a stronger property that guarantees authentication of each

subpath in a given path p. The property, called goodPath2pt, d, pq, is defined in Figure 17.

The meaning of the variables remains the same as before.

Compared with goodPath, the last two rules of goodPath2 additionally assert the existence

of a route tuple. The predicate routepn, d, c, n :: p1, slq@pn, t1q states that node n generates

a route tuple for path n :: p1 at time t1, and that sl is the signature list that authenticates

the path n :: p1. This property ensures that an attacker cannot use n’s route advertisement

for another path p1, which happens to share the two direct links of n. More specifically,

given p “ n1 :: n :: n2 :: p1 and p1 “ n1 :: n :: n2 :: p2, with p1 ‰ p2 , an attacker could not

replace p with p1 without being detected. However, a protocol that only requires a node n

to sign the links to its direct neighbors would be vulnerable to such attack.

46

3.4.2. SCION

SCION [91] is a clean-slate design of Internet routing architecture that offers more flexible

route selection and failure isolation along with route authenticity. Our case study focuses

on the routing mechanism proposed by SCION. We only provide high-level explanation

of SCION. Detailed encoding can be found under the following link (http://netdb.cis.

upenn.edu/secure_routing/).

In SCION, Autonomous Domains (AD) — a concept similar to Autonomous Systems (AS)

in BGP — are grouped into different Trust Domains (TD). Inside each Trust Domain,

top-tier ISP’s are selected as the TD core, which provide routing service inside and across

the border of TD. Figure 18 presents an example deployment of SCION with two TD’s.

Each AD can communicate with its neighbors. The direction of direct edges represents

provider-customer relationship in routing; the arrow goes from a provider to its customer.

1

5

4

2

3 7

6
1
0

7

8

TD 1 TD 2

Core Core

Figure 18: An example deployment of SCION

To initiate the routing process, a TD core periodically generates a path construction an-

nouncement, called a beacon, to all its customer ADs. Each non-core AD, upon receiving a

beacon, (1) verifies the information inside the beacon, (2) attaches itself to the path inside

the received beacon to construct a new beacon, and (3) forwards the new beacon to its

customer ADs. Each beacon represents a path towards the TD core (e.g. path “1-2-3” in

Figure 18). After receiving k beacons , an downstream AD selects m paths out of k and

47

http://netdb.cis.upenn.edu/secure_routing/
http://netdb.cis.upenn.edu/secure_routing/

uploads them to the TD core, thus finishing path construction (k and m can be set by the

administrator). When later an AD n intends to send a packet to another AD n1, it first

queries the TD core for the paths that n1 has uploaded, and then constructs a forwarding

path combining its own path to the TD core with the query result. For example, in Fig-

ure 18, when node 4 wants to communicate with node 3, it would query from the TD core

for path “1-2-3”, and combine it with its own path to the TD core (i.e. “4-5”), to get the

desired path “4-5-1-2-3”.

In Table 2, we summarize the SANDlog encoding of the path construction phase in SCION.

Definitions of important tuples can be found in Figure 19. The path construction beacon

plays an important role in SCION routing mechanism. A beacon is composed of four fields:

an interface field, a time field, an opaque field and a signature. The interface field in

SCION is identical to the announced path in S-BGP. An interface field contains a list of

AD identifiers representing the routing path. As its name suggests, the interface field also

includes each AD’s interfaces to direct neighbors in the path — SCION calls the interface

to an AD’s provider as ingress and the one to a customer as egress. Each AD attaches his

own identifier along with its ingress and egress to the end of the received interface field,

generating the new interface field. For example, in Figure 18, assume the ingress interface

of AD 2 against AD1 is “a”, and the egress interface of AD 2 against AD 4 is “b”. Given

an interface field {c::1} from AD 1 — c represents the egress interface of AD 1 against AD

2 — the newly generated interface field at AD 2 targeting AD 4 will be {c::1::a::b::2}.

The time field is a list of time stamps which record the arrival time of the beacon at each

AD. The opaque field adds a message authentication code (MAC) on each AD’s ingress and

egress fields using the AD’s private key, for the purpose of path authentication during data

forwarding. The final part is called the signature list. Each AD constructs a signature by

signing the above threes fields (i.e. the interface field, the opaque field and the time field)

along with the signature received from preceding ADs. The newly generated signature is

appended to the end of the signature list.

48

Rule Summary Head Tuple
b1: TD core generates a signature. signaturep@core, info, sig, timeq
b2: TD core signs beacon global information. signaturep@core, info, sig, timeq
b3: TD core initiates an opaque field. macp@core, info, hashq
b4: TD core initiates global info of beacon. beaconPrepp@core, glb, sigG, timeq
b5: TD core sends a new beacon to neighbor. beaconInip@nei, core, td, itf ,

tl, ol, sl, sigGq
b6: AD receives a beacon from TD core. beaconRevp@ad, td, td, itf ,

tl, ol, ing, sigGq
b7: AD receives a beacon from non-core AD. beaconRevp@ad, td, ing, itf ,

tl, ol, sl, sigGq
b8: AD verifies global information. beaconToVerip@ad, td, itf , l, ol,

sl, sigG, itfv, posq
b9: AD recursively verifies signatures. beaconToVerip@ad, td, itf , tl, ol,

sl, sigG, itfv, posq
b10: AD validates a beacon. verifiedBeaconp@ad, td, ing, itf ,

tl, ol, sl, sigGq
b11: AD creates signature for new beacon. signaturep@ad, info, sig, timeq
b12: AD initiates opaque field for new beacon. macp@ad, info, hashq
b13: AD sends the new beacon to neighbor. beaconFwdp@nei, ad, td, itf ,

tl, ol, sl, sigGq
pc1: AD extracts path information. upPathp@ad, td, itf , ol, tlq
pc2: AD initiates path upload. pathUploadp@nei, ad, src, core,

itf , ol, op, posq
pc3: AD sends path to upstream neighbor. pathUploadp@nei, ad, src, core,

itf , ol, op, posq
pc4: TD core stores received path. downPathp@core, src, itf , opq

Table 2: SANDlog encoding of path construction in SCION

49

coreTDp@n, c, td, ctf q c is the core of TD td with certificate ctf attesting to that fact
providerp@n,m, igq m is n’s provider, with traffic into n through interface ig
customerp@n,m, egq m is n’s customer, with traffic out of n through interface eg
beaconInip@m,n, td, itf , containing a path, is initialized by n and sent to m.

itf , tl, ol, sl, sgq tl is a list of time stamps,
ol is a list of opaque fields, whose meaning is not relevant here.
sl is list of signatures for route attestation.
sg is a signature for certain global information,
which is not relevant here.

verifiedBeaconp@n, td, itf is the stored interface fields from n to the TD core in td.
itf, tl, ol, sl, sgq Rest of the fields have the same meaning as those in beaconIni

beaconFwdp@m,n, td, itf is forwarded to m with corresponding signature list sl
itf , tl, ol, sl, sgq. Rest of the fields have the same meaning as those

in beaconIni
upPathp@n, td, itf , opqU is a list of opaque fields indicating a path.

opqU , tlq Rest of the fields have the same meaning as those in beaconIni.
pathUploadp@m,n, src is the node (AD) who initiated the path upload process.

src, c, itf , opqD, c is TD core of an implicit TD.
opqU , ptq opqD is the opaque fields uploaded.

pt indicates the next opaque field in opqU to be checked.
itf and opqU have the same meaning as those in upPath.

Figure 19: Tuples for SCION

SCION also satisfies similar route authenticity properties as S-BGP. Each path in SCION

is composed of two parts: a path from the sender to the TD core (called “up path”) and a

path from the TD core to the receiver (called “down path”). We only prove the properties

for the up paths. The proof for the down paths can be obtained similarly by switching

the role of provider and customer. Tuples provider and customer in SCION can be seen as

counterparts of the link tuple in S-BGP, and tuple beaconIni and tuple beaconFwd correspond

to tuple advertise. The definition of route authenticity in SCION, denoted ϕauthS, is defined

as:

ϕauthS = @n,m, t, td, itf , tl, ol, sl, sg,

honestpnq ^

pbeaconInip@m,n, td, itf , tl, ol, sl, sgq@pn, tq _

beaconFwdp@m,n, td, itf , tl, ol, sl, sgq@pn, tqq

Ą goodInfopt, td,n, sl, itf q

50

coreTDpad, c, td, ctf q@pad, tq
Honestpcq Ą Dt1, t1 ď t ^ customerpc, n, cegq@pc, t1q

goodInfopt, td, ad,nil, c :: ceg :: n :: nilq

coreTDpad, c, td, ctf q@pad, tq
Honestpnq Ą Dt1, t1 ď t ^ providerpn, c,nigq@pn, t1q ^ customerpn,m,negq@pn, t1q

^ Dtd1, tl, ol, sg, s, verifiedBeaconpn, td1, c :: ceg :: n :: nig :: nil, tl,
ol, s :: nilq@pn, t1q

goodInfopt, td, ad,nil, pc :: ceg :: n :: nilqq
goodInfopt, td, ad, s :: nil, c :: ceg :: n :: nig :: neg :: m :: nilq

Honestpnq Ą Dt1, t1 ď t ^ providerpn, h,nigq@pn, t1q ^ customerpn,m,megq@pn, t1q
^ Dtd1, tl, ol, sg, s, sl, verifiedBeaconpn, td1, p1``h :: hig :: heg :: n :: nig,

tl, ol, s :: slq@pn, t1q.
goodInfopt, td, ad, sl, p1 ``h :: hig :: heg :: n :: nilq

goodInfopt, td, n, s :: sl, p1``h :: hig :: heg :: n :: nig :: neg :: m :: nilq

Figure 20: Definitions of goodInfo

Formula ϕauthS asserts a property goodInfopt, td, n, sl, itf q on any beacon tuple generated

by node n, which is either a TD core or an ordinary AD. The definition of goodInfo is

shown in Figure 20. Predicate goodInfopt, td,n, sl, itf q takes five arguments: t represents

the time, td is the identity of the TD that the path lies in, n is the node that verifies the

beacon containing the interface field itf , and sl is the signature list associated with the

path. goodInfopt, td,n, sl, itf q makes sure that each AD present in the interface field itf does

have the specified links to its provider and customer respectively. Also, for each non-core

AD, there always exists a verified beacon corresponding to the path from the TD core to it.

More concretely, the definition of goodInfo considers three cases. The base case is when

a TD core c initializes an interface field c :: ceg :: n :: nig :: nil and sends it to AD n.

We require that c be a TD core and n be its customer. The next two cases are similar,

they both require the current AD n have a link to its preceding neighbor, represented by

provider, as well as one to its downstream neighbor, represented by customer. In addition, a

verifiedBeacon tuple should exist, representing an authenticated route stored in the database,

51

with all inside signatures properly verified. The difference between these two cases is caused

by two possible types of an AD’s provider: TD core and non-TD core.

The proof strategy is exactly the same as that used in proof of goodPath about S-BGP. To

prove ϕauthS, we first prove progscion has a stronger program invariant ϕI :

(b) ¨; ¨ $ progscipnq : ti, yb, yeu.ϕIpi, yb, yeq

where ϕIpi, yb, yeq is defined as:

ϕIpi, yb, yeq “
Ź

pPhdOfpsciq @t,@~x, yb ď t ă ye ^ pp~xq@pi, tq Ą ϕppi, t, ~xq.

Especially, ϕp for beaconIni and beaconFwd are as follows:

ϕbeaconInipi, t,m, n, td, itf , tl, ol, sl, sgq “ goodInfopt, td, n, sl, itf q

ϕbeaconFwdpi, t,m, n, td, itf , tl, ol, sl, sgq “ goodInfopt, td, n, sl, itf q

As in S-BGP, (b) can be proved using Inv rule, whose premises are verified in Coq. After

(b) is proved, we can deduce ϕ1 “ @n, t1,Honestpnq Ą ϕIpn, t
1,´8q by applying Honest rule

to (b). Finally, ϕauthS is proved by showing that ϕ1 Ą ϕauthS, which is straightforward.

At the end of the path construction phase, an AD needs to upload its selected paths to the

TD core for future queries (i.e. rules pc1´ pc4 in Table 2). The uploading process uses the

forwarding mechanism in SCION, which provides hop-by-hop authentication. An AD who

wants to send traffic to another AD attaches each data packet with the opaque field extracted

from a beacon received during the path construction phase. The opaque field contains MACs

of the ingress and egress of all ADs on the intended path. When the data packet is sent

along the path, each AD en-route re-computes the MAC of intended ingress and egress

using its own private key. This MAC is compared with the one contained in the opaque

field. If they are the same, the AD knows that it has agreed to receiving/sending packets

from/to its neighbors during path construction phase and forwards the packet further along

the path. Otherwise, it drops the data packet.

52

The formal definition of data path authenticity in SCION is defined as:

ϕauthD = @m,n, t, src, core, itf , opqD, opqU , pt,

honestpnq ^

pathUploadp@m,n, src, core, itf , opqD, opqU , ptq@pn, tq Ą

goodFwdPathpt,n, opqU , ptq

Formula ϕauthD asserts property goodFwdPathpt,n, opqU , ptq on any tuple pathUpload sent

by a customer AD to its provider. goodFwdPathpt,n, opqU , ptq has four arguments: t is

the time. n is the node who sent out pathUpload tuple. opqU is a list of opaque fields for

forwarding. pt is a pointer to opqU , indicating the next opaque field to be checked. Except

time t, all arguments in goodFwdPathpt,n, opqU , ptq are the same as those in pathUpload, as

described in Figure 19. goodFwdPathpt,n, opqU , ptq states that whenever an AD receives a

packet, it has direct links to its provider and customer as indicated by the opaque field in the

packet. In addition, it must have verified a beacon with a path containing this neighboring

relationship.

The definition of goodFwdPathpt,n, opqU , ptq is given in Figure 21. There are four cases. The

base case is when pt is 0, which means nothing has been verified. In this case goodFwdPath

holds trivially. If pt is equal to the length of opaque field list, meaning all opaque fields

have been verified already, then based on SCION specification, the last opaque field should

be that of the TD core. Being a TD core requires a certificate (coreTD), and a neighbor

customer along the path (customer). When pt does not point to the head or the tail of

the opaque field list, node n should have a neighbor provider(provider), and a neighbor

customer(customer). It must also have received and processed a verifiedBeacon during path

construction. The second and third cases both cover this scenario. The second case applies

when a node n’s provider is TD core, while in the third case, n’s provider and customer are

both ordinary TDs.

SCION uses MAC for integrity check during data forwarding, so we use the following axiom

about MAC. It states that if a node n verifies a MAC, using n1’s key k, there must have

53

pt “ 0
goodFwdPathpt,n, opqU , ptq

Honestpnq Ą Dt1,m, td, ctf, t1 ď t
^ coreTDpn, n, td, ctf q@pn, t1q
^ customerpn,m, cegq@pn, t1q

goodFwdPathpt,n, opq1``rceg :: mac :: nils :: nil,
lengthpopq1``rceg :: mac :: nils :: nilqq

0 ă pt ^ pt ă lengthpopq1``rnig :: neg :: mac1 :: nils :: rceg :: mac :: nils :: nil ^
Honestpnq Ą Dt1, h,m, t1 ď t

^ providerpn, h,nigq@pn, t1q
^ customerpn,m,megq@pn, t1q
^ Dtd1, tl, sg, sl, verifiedBeaconpn, td1, h :: ceg :: n :: nig,

tl, rceg :: mac :: nils :: nil, sl, sgq@pn, t1q
goodFwdPathpt,n, opq1``rnig :: neg :: mac1 :: nils :: rceg :: mac :: nils :: nil, ptq

0 ă pt ^
pt ă lengthpopq1``rnig :: neg :: mac1 :: nils :: rhig :: heg :: mac :: nils``opq2q ^
Honestpnq Ą Dt1, h,m, t1 ď t

^ providerpn, h,nigq@pn, t1q
^ customerpn,m,megq@pn, t1q
^ Dtd1, tl, sg, sl, p1, p2, verifiedBeaconpn, td1, p1``h :: hig :: heg :: n :: nig,

tl, p2``rhig :: heg :: mac :: nils :: nil, sl, sgq@pn, t1q
goodFwdPathpt,n, opq1``rnig :: neg :: mac1 :: nils :: rhig :: heg :: mac :: nils``opq2, ptq

Figure 21: Definitions of goodFwdPath

been a node n2 who created the MAC at an earlier time t 1.

Amac = @msg,m, k, n, n1, t,

verifyMacpmsg,m, kq@pn, tq ^ privateKeyspn, n1, kq@pn, tq ^

Dn2,Honestpn2q Ą Dt1, t1 ă t ^ privateKeyspn2, n1, kq@pn2, tq ^

macpn2,msg,mq@pn2, t1q

In SCION, each node should not share its own private key with other nodes. This means,

for each specific MAC, only the node who generated it can verify its validity. This fact

simplifies the axiom:

A1mac = @msg,m, k, n, t,

verifyMacpmsg,m, kq@pn, tq ^ privateKeyspn, kq@pn, tq ^

Honestpnq Ą Dt1, t1 ă t ^ macpn,msg,mq@pn, t1q

54

The rest of the proof follows the same strategy as that of goodPath and goodInfo. Interested

readers can refer to our proof online for details.

3.4.3. Comparison between S-BGP and SCION

In this section, we compare the difference between the security guarantees provided by S-

BGP and SCION. In terms of practical route authenticity, there is little difference between

what S-BGP and SCION can offer. This is not surprising, as the kind of information

that S-BGP and SCION sign at path construction phase is very similar. Though both use

layered-signature to protect the routing information, signatures in S-BGP are not technically

layered—ASes in S-BGP only sign the path information, not including previous signatures.

On the other hand, ADs in SCION sign the previous signature so signatures in SCION are

nested. Consider an AS n in S-BGP that signed the path p twice, generating two signatures:

s and s1. An attacker, upon receiving a sequence of signatures containing s, can replace s

with s1 without being detected. This attack is not possible in SCION, as attackers cannot

extract signatures from a nested signature.

SCION also provides stronger security guarantees than S-BGP in data forwarding. Though

S-BGP does not explicitly state the process of data forwarding, we can still compare its

IP-based forwarding to SCION’s forwarding mechanism. Like BGP, an AS running S-BGP

maintains a routing table on all BGP speaker routers that connect to peers in other domains.

The routing table is an ordered collection of forwarding entries, each represented as a pair

of xIP prefix, next hopy. Upon receiving a packet, the speaker searches its routing table

for IP prefix that matches the destination IP address in the IP header of the packet, and

forwards the packet on the port corresponding to the next hop based on table look-up. This

next hop must have been authenticated, because only after an S-BGP update message has

been properly verified will the AS insert the next hop into the forwarding table.

However, SCION provides stronger security guarantee over S-BGP regarding the last hop

of the packet. An AS n running S-BGP has no way of detecting whether a received packet

55

is from legitimate neighbor ASes who are authorized to forward packets to n. Imagine that

n has two neighbor ASes, m and m1. n knows a route to an IP prefix p and is only willing

to advertise the route to m. Ideally, any packet from m1 through n to p should be rejected

by n. However, this may not happen in practice for AS’s who run S-BGP for routing. As

long as its IP destination is p, a packet will be forwarded by n, regardless of whether it is

from m or m1. On the other hand, SCION routers would discard such packets by verifying

the MAC in the opaque field, since m cannot forge the MAC embedded in the beacon.

56

CHAPTER 4

Automated Verification and Debugging

with Symbolic Execution

The program logic introduced in Chapter 3 is powerful, as its specification language –i.e.,

first-order logic – is expressive enough to specify most common properties in distributed

systems. However, to verify properties specified in our logic, a tedious and laber-intensive

manual proof is required. It is also beyond the ability of a system manager to use proof

assistants efficiently. What is worse is that when the proofs cannot be constructed, it is

nontrivial to find out what went wrong. Either there are bugs in the program, or the invari-

ants used in the proofs are not correct. There is little tool support for identifying problems

under these circumstances. Therefore, in this part of the dissertation, we aims at developing

a static analysis-based technique to analyze the safety properties of NDlog programs au-

tomatically. When properties do not hold, our tool provides a concrete counterexample to

further aid program debugging. The properties that we are interested in include invariants

of the network and desirable behavior of nodes in the network. For instance, we would

like to know if every forward entry corresponds to a route announcement packet, or if a

successfully delivered packet indicates proper forwarding table setup in the switches that

the packet traverses. One observation we have is that a large fragment of the interesting

properties of networks can be expressed in a simple fragment of first-order logic. Leveraging

this limited expressive power, we are able to develop static analysis for NDlog programs.

Our static analysis examines the structure of the NDlog program and builds a summary

data structure for all derivations of that program. Properties specified in the restricted

format of first-order logic are checked on the summary data structure with the help of

the SMT solver Z3 [88]. The challenge is how to deal with recursive programs. For such

programs, the number of possible derivations for recursive predicates is infinite. We use

57

a concise representation for recursive predicates, so all possible derivations can be finitely

represented. To evaluate our analysis, we built a prototype tool, and verified several safety

properties of a number of SDN controller programs, where the SDN’s controller program

and switch logic are specified in NDlog.

The proposed static analysis makes the following technical contributions.

• We developed algorithms for automatically analyzing a class of safety properties of

NDlog programs.

• We proved the soundness and completeness of our algorithms for non-recursive pro-

grams, and the soundness of our algorithms for recursive programs.

• We implemented a prototype tool and verified a number of safety properties of SDN

controller programs.

As our driving example, we will use the erroneous program in Figure 22. The non-recursive

set of rules in the program computes one-, two-, and three-hop reachability information

within a network. There is an error in rule r2, where onehop X Z C2 should be onehop Z Y

C2, thus this program cannot derive three-hop paths.
ThreeHops (With a deliberate error in r2) :
r1 onehop(@X,Y,C) :- link(@X,Y,C).
r2 twohops(@X,Z,C) :- link(@X,Z,C1),

onehop(@X,Z,C2),C = C1+C2.
r3 threehops(@X,Y,C) :- onehop(@X,Z,C1),

twohops(@Z,Y,C2),C=C1+C2.
r4 threehops(@X,Y,C) :- twohops(@X,Z,C1),

onehop(@Z,Y,C2),C=C1+C2.

Figure 22: An erroneous NDlog program for demonstration purpose. The rule r2 is wrong
as it uses onehop X Z C2 as its body relation, which should be onehop Z Y C2

4.1. Overview

We first present an overview of our solution. The static analysis mainly consists of two

processes: a process that summarizes all derivations of predicates in an auxiliary data

structure, which we call a derivation pool, and a process that queries properties on the

58

derivation pool. NDlog programs are represented abstractly as dependency graphs. Re-

cursive programs are more complicated than non-recursive programs, so we explain the

algorithms for non-recursive programs first, before we discuss extensions to support recur-

sive programs. The dependency graph and the properties to be checked are of the same form

for both recursive and non-recursive programs. Next, we formally define the dependency

graph and the format of the properties.

Dependency graph A dependency graph can be formally defined as follows:

Predicate type τ ::“ Pred | bt Ą τ

Dependency graph G ::“ pNp List,Nr List,E Listq

Predicate node Np ::“ pnID, p:τ, cycq | pnID, p:τ, ncycq

Rule node Nr ::“ prID, hd, body, cq

Edge E ::“ prID,nIDq | pnID, rIDq

Rule head hd ::“ pp~xq

Rule body body ::“ p1p ~x1q, ¨ ¨ ¨ , pnp ~xnq

Rule constraints c ::“ e1 bop e2 | c1^c2 | c1_c2 | Dx.c

A dependency graph has two types of nodes, predicate nodes, denoted Np, and rule nodes,

denoted Nr . Each predicate node corresponds to a tuple in the program. A predicate node

consists of a unique ID for the node, the name of the predicate and its type, and a tag

indicating whether the predicate is on a cycle in the graph. The tag cyc means that the

node is on a cycle and ncyc means the opposite. Each rule node corresponds to a rule in the

program. A rule node consists of a unique ID, the head of the rule, the body of the rule,

which is a list of predicates, and the constraints. The edges, denoted E, are directional.

Each edge points either from a rule node to the predicate node which is the head of that

rule node, or from a predicate node to a rule node where the predicate is in the rule body.

To make variable substitution easier, each predicate takes unique variables as arguments.

59

For instance, the following two NDlog rules are equivalent, but r1 is the normal form.

r1: p(x,y) :- q(x1), s(y1), x1=y1, x=x1, y=y1.

r2: p(x,y) :- q(x), s(y), x=y.

The dependency graph for ThreeHops is shown in Figure 23, where boxes represent nodes

in the graph and arrows represent edges in the graph.

link: (int, int, int) →!pred!

onehop: (int, int, int) →!pred!

twohops: (int, int, int) →!pred!

threehops (int, int, int) →!pred!

r1; head: onehop x y z; body: link a b c!
constraints: x=a, y=b, z=c!

r2; head: twohop x y z; !
body: link a b c, onehop a’ b’ c’!
constraints: x=a, y=b’, z=c+c’ a=b’, b=b’!

r3; head: threehops x y z; !
body: onehop a b c, twohops a’ b’ c’!
constraints: x=a, y=b’, z=c+c’, b=a’!

r4; head: threehops x y z; !
body: twohops a b c, onehop a’ b’ c’!
constraints: x=a, y=b’, z=c+c’, b=a’!

Figure 23: A dependency graph for the ThreeHops program(buggy)

Properties We focus on safety properties, which state that bad things have not happened

yet. We use trace-based semantics of NDlog [63, 19]. The advantage of trace-based semantics

over fixed point semantics is that the order in which predicates are derived can be clearly

specified using traces. Fixed point semantics only care about what is derivable in the end,

and are not precise enough to capture transient faults that appear only in the middle of the

execution of network protocols.

To allow for automated analysis, we restrict the form of properties to be the following:

ϕ “ @ ~x1.p1p ~x1q ^ ¨ ¨ ¨ ^ @ ~xn.pnp ~xnq ^ cpp ~x1 ¨ ¨ ¨ ~xnq Ą

60

D~y1.q1p~y1q ^ ¨ ¨ ¨ ^ D ~ym.qmp ~ymq ^ cqp ~x1 ¨ ¨ ¨ ~xn, ~y1 ¨ ¨ ¨ ~ymq

The meaning of the property is the following: if all of the predicates pi are derivable, and

their arguments satisfy constraint cp, then each of the predicate qj must be in one of the

derivations of pi, and the constraint cq must be true. We implicitly require qis to be derived

before pis. A lot of the correctness properties can be specified using formulas of this form.

For instance, we can specify the following three properties of our ThreeHops program:

Q1: @x, y, z, threehops x y z Ą Dx1, z1, twohops x x1 z1

Q2: @x, y, z, threehops x y z

Ą Dx1, x2, z1, z2, z3, link x x1 z1 ^ link x1 x2 z2

^ link x2 y z3

Q3: Dx, y, z, threehops x y z

Q1 states that to derive threehops x y z, it is necessary to derive twohops x x1 z1, for some

x1 and z1. Q1 does not hold because there are two ways to derive threehops and one of

them does not contain such a twohops tuple as a sub-derivation. Q2 states that to derive a

threehops tuple, three links connecting those two nodes are necessary. Q2 should hold. Q3

states that threehops tuple is derivable for some x, y, and z.

4.2. Analyzing Non-recursive Programs

In this section, we first explain how to compute the derivation pool for a non-recursive

NDlog program. Then, we show how to check properties. Next, we show how to incorporate

network constraints into our property checking algorithm. Finally, we prove the correctness

of our algorithm and analyze its time complexity.

61

4.2.1. Derivation Pool Construction

For a non-recursive program, its derivation pool maps each predicate to the set of all

derivation trees rooted at that predicate. It is formally defined as follows.

Derivation pool dpool ::“ ¨ | dpool, pnID, p:τq ÞÑ ∆

Entries ∆ ::“ ¨ |∆, pc,Dq

Derivation D ::“ pBT , pp~xqq | prID, pp~xq,D Listq

We write dpool to denote derivation pools. We write ∆ to denote lists of pairs of a constraint

and a derivation tree, denoted D. At a high-level, D can be instantiated to be a valid

derivation of pp~tq using rules in the program, if c is satisfiable. A derivation tree, D, is

inductively defined. The base tuples, denoted pBT , pp~xqq, are the leaf nodes. A non-leaf

node consists of the unique rule ID of the last rule of the derivation, the conclusion of that

rule (pp~xq), and the list of derivation trees for the body predicates of that rule (D List). We

write dpoolppq to denote dpoolpnID, p:τq, which returns ∆.

Figure 24 and 25 present the main functions used for constructing a derivation pool from a

dependency graph. The top-level function GenDPool is defined in Figure 24. This function

follows the topological order of the nodes in the dependency graph G. We keep track of a

working set P , which is the set of nodes whose derivations can be summarized currently.

We also keep track of the set of edges that the function has not traversed yet. The function

terminates when all of the edges in the dependency graph have been traversed and the

derivations for all of the predicates in the dependency graph are built. In the body of

GenDPool, we remove one predicate node p from P , and build all derivations for it. A base

tuple’s only possible derivation is one with itself as the leaf node. The constraint associated

with this derivation is the trivial true constraint J (Line 8). When p is not a base tuple,

derivations for tuples that p’s derivations depend on have been stored in dpool. The GenDs

function constructs derivations for p given the dependency graph and the current derivation

pool (explained later).

62

1: function GenDPool(G)
2: E Ð G’s edges
3: P Ð G’s predicate nodes that have no incoming edges
4: while E ‰ empty || P ‰ empty do
5: remove pnID, p:τq from P
6: ~xÐ freshpp:τq
7: if p is a base tuple then
8: dpoolÐ dpoolrpnID, pq ÞÑ tpJ, pBT , pp~xqqqus
9: else

10: dÐ GenDs(G, dpool, pnID, p:τq)
11: dpoolÐ dpool Y d
12: (* done processing p, remove edges *)
13: P,E ÐremoveEdges(P , E, G, nID)
14: end while
15: end function
16:
17: function removeEdges(P , E, G, nID)
18: remove outgoing edges of nID from E
19: for each rID with no edges of form p , rIDq in E do
20: remove edges (rID, nID) from E
21: for each pnID, p:τq with no incoming edges in E do
22: add pnID, p:τq to P
23: end function

Figure 24: Construct derivation pools for non-recursive programs

After the derivations for a predicate p are constructed, outgoing edges from p are removed

(Line 13), so predicates that depend on p can be processed in later iterations. Function

RemoveEdges removes outgoing edges from p, and outgoing edges from rule nodes that now

do not have incoming edges. This may result in predicates enqueued into P for the next

iteration of processing.

Function GenDs (Figure 25) takes the dependency graph, the derivation pool that has been

constructed so far, and a predicate p, as arguments, and returns all derivation pool entries

for p. The body of GenDs calls GenDRule to construct derivations for each rule that

derives p. The function GenDRule makes use of List map and fold operations to construct

all possible derivations of p from a rule of the form r : pp~xq:-q1p~y1q, ..., qnp ~ynq, c. dpool has

already stored all possible derivations for each qi. We need to compute all combinations of

63

1: function GenDs(G, dpool, pnID, p:τq)
2: ∆ Ð tu

3: for each rule with ID rID where (rID, nID) in G do
4: ∆ Ð ∆YGenDRule(G, dpool, pnID, p:τq,rID)

return ∆
5: end function
6:
7: function GenDRule(G, dpool, pnID, p:τq, rID)
8: ppp~yq, Q, crq Ð GprIDq
9: D Ð List.map (LookUp dpool) Q

10: D1 ÐList.FoldRight MergeDLL D nil
11: ~xÐ freshppp~yqq
12: return List.Map (completeD cr rID pp~yq ~x) D1
13: end function
14:
15: function MergeD(dci, dc2i)
16: pσ2i, c2i, d2iq Ð dc2i
17: pσi, ci, diq Ð dci
18: pσ1i, c

1
i, d

1
iq Ð freshpci, diq

19: return pσiσ1i Y σ2i, c
1
i ^ c2i, d

1
i::d2iq

20: end function
21:
22: function LookUp(dpool, qp~xq)
23: return List.Map (extractD ~x) dpoolpqq
24: end function
25:
26: function extractD(~x, pc, dq)
27: prID, pp~yq, dlq Ð d
28: return p~y{~x, c, dq
29: end function
30:
31: function completeD(cr, rID, pp~yq, ~x, d)
32: pσ, c, dlq Ð d
33: return pc ^ crr~x{~ysσ, prID, pp~xq, dlqq
34: end function

Figure 25: Generate derivation pool for one predicate

the derivations for qis. The LookUp function on line 11 collects the list of derivations for

one body tuple and the list map function returns the list of derivations for all body tuples.

More precisely, the LookUp function returns a list of tuples of the form pσ, c, dq, where

d is a derivation, c is the constraint associated with that derivation, and σ is a variable

substitution. The domain of σ is qi’s arguments in the rule node, and the range of σ is

64

qi’s arguments in the conclusion of the derivations. We need these substitutions because

we alpha-rename the derivations. The constraint in the rule node needs to use the correct

variables. Line 12 uses list fold operation to generate all possible derivations. Function

MergeDLL and MergeDL are helper functions to generate the list of derivations. Function

MergeD is the function that takes as arguments, the list of derivations from qm to qi`1

and one derivation for qi, and prepends the derivation for qi to the list of derivations from

qm up to qi. Here, the substitutions need to be merged and the resulting constraint is the

conjunction of the two constraints. Finally on line 14, function completed generates a well-

formed derivation for p using the rule ID and the list of derivations for qis. The constraint

associated with this derivation of p is the conjunction of constraints for the derivation of

qi and the constraint in the rule body. The substitutions are applied to the constraint c,

because all derivations are alpha-renamed and use fresh variables.

Example Constraint Pool A simplified derivation pool for onehop, twohops, and threehops

is shown below. To ease presentation, we rewrite the derivation pool using equality con-

straints. onehop has only one derivation, using rule r1. A derivation D is a tuple consisting

of four fields: the name of the last rule in the derivation; the conclusion of the derivation;

the constraint associated with this derivation; and the list of derivations of the premises

of the last rule. We instantiate the rules with concrete variables. The constraint in D is

true, denoted J; as there is no constraint in r1. The predicate twohops also has only one

derivation, using r2. The premises of r2 are link and onehop. Since link is a base tuple,

we simply represent its derivation as the tuple itself. The sub-derivation of onehop is the

same as in the previous case. The constraint for deriving onehop is the conjunction of three

constraints: c1 is the constraint for deriving onehop, c2 for the base tuple link, and c3 the

rule constraint of rule r2. Here c2 is true, because no constraint is imposed on base tuples.

onehop

D: pr1, onehop x1 x2 x3, tlink x1 x2 x3uq

65

c “ J

twohops

D: pr2, twohops x1 x2 x3

tlink x1 x2 y3, pr1, onehop x1 x2 z3, tlink x1 x2 z3uuq

c “ J ^ J ^ x3 “ y3 ` y3

threehops

D1: (r3, threehops x1 x2 x3,

tpr1, onehop x1, y2, y3, tlink x1 y2 y3uq

pr2, twohops y2 x2 s3,

tlink y2 x2 t3, pr1, onehop y2 x2 u3, tlink y2 x2 u3uququq

c “ J ^ J ^ J ^ s3 “ t3 ` u3 ^ x3 “ y3 ` s3

D2: (r4, threehops x1 x2 x3,

tpr2, twohops x1 y1 s3,

tlink x1 y1 t3, pr1, onehop x1 y1 u3, tlink x1 y1 u3uuq

pr1, onehop y1, x2, y3, tlink y1 x2 y3uquq

c “ J ^ J ^ J ^ s3 “ t3 ` u3 ^ c5 “ x3 “ y3 ` s3

Tuple threehops has two derivations, one uses r3, the other uses r4. Both derivations con-

tain sub-derivations of onehop and twohops. The constraints for deriving threehops include

constraint for deriving twohops, onehop, and the rule constraint of r3 (r4).

4.2.2. Property Query

Figure 26 shows the property query algorithm for non-recursive programs. The top-level

function CkProp takes the derivation pool and the property as arguments. On line 3,

we separate the property into the list of predicates to the left of the implication (P),

the constraint to the left of the implication (cp), the list of predicates to the right of the

implication (Q), and the constraint to the right of the implication pcqq. Next, similar to

the derivation pool construction, we construct all possible combinations of the derivations

of all the pis in P between lines 5 to 9. We omit the definition of MergeDerivation, as it

66

1: function CkProp(dpool, ϕ)
2: pP, cp, Q, cqq Ð ϕ
3: LÐ LookUpRecpdpool, P q
4: D ÐMergeDerivation L
5: for each pσ, cd, dq in D do
6: z ÐCkPropD(cd, cpσ, d,Q, cqσ)
7: if z “ invalidpd, σrq then
8: return invalidpd, σrq
9: return valid

10: end function
11:
12: function CkPropD(cd, cp, d,Q, cq)
13: if Check sat cd ^ cp = (sat, σp) then
14: (* find all occurrences of q in d *)
15: Σ ÐList.map (Unify d) Q
16: if nil P Σ then
17: (* some qi does not appear in d *)
18: return invalid(d, σp)
19: else
20: Σq ÐMergeLL Σ
21: c1q ÐConj(Σq, cq)
22: ca Ð cp ^ cd ^ c1q
23: if Check sat ca “ psat, σaq then
24: return invalid(d, σa)
25: else
26: return valid
27: else
28: (* Constraints for p1 . . . pn and cp are unsat *)
29: return valid
30: end function

Figure 26: Property query

is similar to MergeDLL. The only difference is that we do not need to alpha-rename the

derivations. Next, we check that for each possible derivation of pis in D, all of qis appear in

the derivation, and the constraint cq holds (lines 10 to 14) using function CkPropD. If for

all possible derivations of pis, we can always find derivations of qis such that the constraint

cq holds, ϕ holds (line 14).

The function CkPropD checks that in the list of derivations d, with constraints cd, whether

all the predicates in Q appear in d, and cq is true. On Line 18, we first check whether all

67

1: function CkPropDC(cd, cp, d,Q, cq, β, cb)
2: if Check sat cd ^ cp “ psat, σp) then
3: Σb ÐList.map (Unify d) β
4: Σ1b ÐMergeLL Σb

5: (* Given Σ1b “ σb1:: ¨ ¨ ¨ ::σbµ, c1b “
Źµ
`“1 cbσb` *)

6: c1b ÐConj(Σ1b, cb)
7: (* find all occurrences of q in d *)
8: Σ ÐList.map (Unify d) Q
9: if nilP Σ then

10: (* check network constraints *)
11: if Check sat cd ^ cp ^ pc

1
bq “ psat, σcq then

12: (* Network constraints are met *)
13: return invalid(d, σc)
14: else
15: return valid
16: else
17: Σq ÐMergeLL Σ
18: c1q ÐConj(Σq, cq)
19: cs Ð cd ^ cp ^ c1q ^ c1b
20: if Check sat cs “ psat, σsq then
21: (* Network constraints are met *)
22: return invalidpd, σsq
23: else
24: return valid
25: else
26: (* Constraints for p1 . . . pn and cp are unsat *)
27: return valid
28: end function

Figure 27: Property query with network constraints

68

the pis are derivable and constraint cp is satisfiable. If the conjunction of the derivation

constraint cd and cp is not satisfiable, then the precedent of ϕ is false, so ϕ is trivially true

for that derivation. So, we return valid in the else branch (line 40). If the conjunction is

satisfiable, then there are substitutions for variables so that all the pis are derivable and the

constraint cp is satisfiable. Next, we need to check whether all qis are derivable. On line 20,

function Unify identifies a list of occurrences of qi in the derivation d. That is, for each qip~yiq

appearing in d, Unify returns the list of substitutions: p~y1{~xq::p~y2{~xq:: ¨ ¨ ¨ ::p ~yn{~xq::nil, where

~x is qi’s arguments in ϕ. The list map function returns the list of the list of occurrences for

all the qis in Q. We call it “UNIFY” because we unify the variables that are qi’s arguments

in ϕ with qi’s arguments in the derivation d. This substitution will be applied to constraint

cq later. If some qi does not appear in d, then Unify will return an empty list nil. Therefore,

on line 21, we check whether each qi will appear at least once in d. If it is not the case, then

we return invalid with the current derivation and one satisfying substitution that makes

pis true for constructing a counterexample. Otherwise, we check whether the constraint

cq can be satisfied. Before doing so, on line 30, we first compute the list of all possible

combinations of occurrences of qis. Again, the function MergeLL is similar to MergeDLL

and we omit the details. Now on line 32, for each possible appearance of qis in d, Σq is a list

of substitutions, each of which, when applied to cq, makes cq use the same variables as those

in the derivation. We ask whether the negation of cq together with the derivation constraint

and the constraint on the arguments of pis are satisfiable. If this is not satisfiable, then we

know that there exists a substitution for variables so that the property ϕ holds. Otherwise,

we return the derivation and the satisfying substitution that makes pis and qis derivable,

but cq false for counterexample construction.

4.2.3. Network Constraints

Sometimes, the network being analyzed has certain network constraints constraints; for in-

stance, every node in the network has only one outgoing link. Our property query algorithm

needs to take into consideration these network constraints. If we ignore these constraints,

69

the counterexample generated by the tool may not be useful as the counterexample could

violate the network constraints.

Network constraints that our analysis can handle have similar form as the properties:

@ ~x1.b1p ~x1q ^ ¨ ¨ ¨ ^ @ ~xk.bkp ~xkq Ą cbp ~x1 ¨ ¨ ¨ ~xkq, where bi is a base tuple. Figure 27 shows the

algorithm for checking properties on networks with constraints. For clarity, we explain the

case with one network constraint. Extending the algorithm to handle multiple constraints

is straightforward.

The top-level function CkPropC (omitted here) is almost the same as CkProp, except

that it takes a network constraint (ϕnet) as an additional argument and uses the function

CkPropDC, which additionally checks network constraints compared to CkPropD. The

function CkPropDC takes as additional arguments, a list base tuples B and the constraint cb

in the network constraint. In the body of CkPropDC, we first check whether the constraint

on pis is satisfiable (line 2). If it is not, then this derivation does not violate the property we

are checking (line 37). Next, between lines 3 to 10, we find all occurrences of the base tuples

in the constraint ϕnet . We find all possible combinations of substitutions for arguments of

these base tuples as they appear in the derivation d. For each occurrence of the base tuples,

the constraint cb needs to be true, so we compute the conjunction of all the cbs. To given

an example, if the constraint is @x, bpxq Ą x ą 0. If d has two occurrences of b, bpyq and

bpzq, then c1b “ y ą 0^z ą 0.

Next, we collect the list of the occurrences of qis, the same as before (line 12). If some qis

do not appear in d (line 13), we additionally check whether this derivation d satisfies the

network constraint (line 15). If it is the case, then we find a counterexample. Otherwise, d

does not violate the property being checked.

Then, we compute the combination of all possible occurrences of qis in derivation d (line 26)

as usual, and find the substitutions that make qis appear in d. We compute the conjunction

of all cqs (line 28). If the conjunction of cd, cp, and the conjunction of all the cbs are found

70

in lines 3 - 10, and the conjunction of all the cqs is satisfiable, then networks constraints

are met although d does not satisfy the property being checked, and we report an error

(lines 30 - 34).

4.2.4. Analysis of the Algorithms

Correctness. We first prove that our derivation pool construction is correct. Lemma 2

states that an entry for a predicate p in the derivation pool maps to a valid derivation of p

if the constraints of that derivation is satisfiable; and that if a predicate p is derivable, then

there must be a corresponding entry in the derivation pool. The function DGraph generates

a dependency graph for prog, which can be straightforwardly defined. The semantics of

NDlog programs are bottom up, so a set of base tuples B is needed to start the execution

of the program. We write σ1ěσ to mean that σ1 extends σ. B denotes a set of ground

base tuples of prog. We write prog, B (d:pp~tq to mean that d is a derivation of pp~tq using

program prog and base tuples B. We write pc, d1:pp~xqq P dpoolppq to mean that pc, d1q is an

entry in the derivation pool dpool for the predicate p and that d1 is a derivation tree with

pp~xq as the root.

Lemma 2 (Correctness of derivation pool construction).

DGraphpprogq “ G and GenDPoolpGq “ dpool

1. If prog, B (d1:pp~tq, then Dσ s.t. pcp~xcq, dp ~xdq:pp~xqq P dpoolppq, dp ~xdqσ “ d1 and

(cp~xcqσ.

2. If pcp~xcq, dp ~xdq:pp~xqq P dpoolppq and (cp~xcqσ where dompσq “ ~xc, then @σ1 s.t. σ1 ě σ

and dompσ1q “ ~xd, DB s.t. B “ tb | b is a base tuple and appears in dp ~xdqσ
1u and

prog, B (dp ~xdqσ
1:pp~xqσ1.

Using the result of Lemma 2, we prove our property checking algorithm is correct with

regard to the formula semantics.

Theorem 3 (Correctness of property query).

ϕ “ @ ~x1.p1p ~x1q ^ ¨ ¨ ¨ ^ @ ~xn.pnp ~xnq ^ cpp ~x1 ¨ ¨ ¨ ~xnq Ą

71

D~y1.q1p~y1q ^ ¨ ¨ ¨ ^ D ~ym.qmp ~ymq ^ cqp ~x1 ¨ ¨ ¨ ~xn, ~y1 ¨ ¨ ¨ ~ymq DGraphpprogq “ G and

GenDPoolpGq “ dpool,

1. CkProppdpool, ϕq “ valid implies @B, prog, B (ϕ.

2. CkProppdpool, ϕq “ invalidpd, σq, implies DB s.t. prog, B * ϕ.

When network constraints are provided, we prove that the property checking algorithm is

correct with regard to the network constraints on base tuples.

Theorem 4 (Correctness of property query with constraints).

ϕ “ @ ~x1.p1p ~x1q ^ ¨ ¨ ¨ ^ @ ~xn.pnp ~xnq ^ cpp ~x1 ¨ ¨ ¨ ~xnq Ą

D~y1.q1p~y1q ^ ¨ ¨ ¨ ^ D ~ym.qmp ~ymq ^ cqp ~x1 ¨ ¨ ¨ ~xn, ~y1 ¨ ¨ ¨ ~ymq

ϕnet “ @ ~u1.b1p ~u1q ^ ¨ ¨ ¨ ^ @ ~uk.bnp ~ukq Ą cbp ~u1 ¨ ¨ ¨ ~ukq

DGraphpprogq “ G and GenDPoolpGq “ dpool,

(1) CkPropCpdpool, ϕnet , ϕq “ valid implies @B, either prog, B (ϕ or B * ϕnet.

(2) CkPropCpdpool, ϕnet , ϕq “ invalidpd, σq implies DB s.t. prog, B * ϕ and B (ϕnet.

Time complexity. We give an upper bound on the time complexity of the property query

algorithm (Figure 26). Given an NDlog program with R rules; each rule contains at most

W body tuples. Also assume |Q| “ m and |P | “ n. The time complexity of our algorithm

is OppRnWR
qnmWRnq. In practice, R and W are usually small. For example, in our case

study, R is bounded by 11 and W is bounded by 5. In this case, R and W can be viewed

as constants.

In CkPropD, we assume |Q| “ m, and d contains at most Dq instances for each qi in Q.

Also, assume each query of Z3 takes a constant time t. Therefore, the size of Σq in line 29

is bounded by pDqq
m, and the running time of the loop (line 30 - line 34) is bounded by

pDqq
mt. So the time complexity of CkPropD is OppDqq

mtq.

The time complexity of CkProp in Figure 26 is dominated by the loop in the algorithm,

72

i.e., line 10 - line 13. Suppose each pi in P has at most Dp instances in d, and |P | “ n,

then for D in line 10, we have |D| ď pDpq
n. Based on the above discussion, each loop takes

OppDqq
mtq. Therefore in the worst case, CkProp takes OppDpq

npDqq
mtq to finish.

We give more detailed estimate of Dp and Dq. Assume the input NDlog program Prog has

R rules, and each rule has at most W body tuples. Define the height H of a derivation tree

as the number of rules on the longest path from the root predicate to any leaf predicate.

Also, let Dppkq represent the maximum possible number of derivations for a predicate all

of whose derivation trees have height at most k. Notice that Prog is non-recursive, so we

have k ă“ R, and Dp “ Dppkq. We have the following theorem:

Theorem 5. Given k ě 1 (k is a natural number), Dppkq ď R
řk´1

j“0 W
j

.

Proof. We prove Theorem 5 with mathematical induction. The base case is straightforward.

When k “ 1, we have Dpp1q ď R. This is true because k “ 1 means that the head predicate

can only be derived using one rule with base tuples as bodies. Since there are at most R

rules, the maximum number of derivations for the predicate is R. For the inductive case,

assume Theorem 5 holds for k “ n´ 1, which means Dppn´ 1q ď R
řn´2

j“0 W
j

. Now consider

a predicate p1 whose derivation trees’ maximum height is n. Given a rule r that derives p1,

each body tuple of r has all its derivation trees’ height bounded by n´ 1. Remember that

r has at most W body tuples. Thus the number of all possible derivations of p1 using rule

r is bounded by Dppn´ 1qW . Since there could be at most R rules that derives p1, we have

Dppnq ď RpDppn´ 1qqW “ R
řn´1

j“0 W
j

.

Based on Theorem 5, Dp “ OpRW
R
q. Next, we calculate Dq. Given a qi in Q, notice

that qi must appear in one of all derivations of p1is in P , which means the number of qi’s

appearance is bounded by the number of nodes that could exist in all the derivations. Each

such derivation has height at most R, with each node in the derivation having at most W

children. Therefore, the maximum number of nodes in a derivation is WR. Since there are

n derivations corresponding to p1is in P , we have Dq “ nWR. Replace Dp and Dq in the

73

time complexity of CkProp, we have OppDpq
npDqq

mtq “ OppRnW
R
qnmWRnq.

4.3. Extension to Recursive Programs

The dependency graph for a recursive program contains cycles. The derivation pool con-

struction algorithm presented in Figure 24 does not work for recursive programs because it

relies on the topological order of nodes in the dependency graph. In this section, we show

how to augment our data structures and algorithms to handle recursive programs.

4.3.1. Derivation Pool for Recursive Predicates

When p is recursively defined, dpool maps p to a pair pc,∆q, where ∆ has the same meaning

as before. The additional constraint c is an invariant of p: c is satisfiable if and only if p is

derivable.
Constraint pool dpool ::“ ¨ ¨ ¨ | dpool, pnID, p:τq ÞÑ pc,∆q

Derivation D ::“ ¨ ¨ ¨ | prec, pp~xqq

Annotation A ::“ ¨ |A, pnID, p:τq ÞÑ p~x, cq

Derivation trees include a new leaf node prec, pp~xqq, where p appears on a cycle in the

dependency graph. This leaf node is a place holder for the derivation of p. We write A to

denote annotations for recursive predicates, provided by the user. A maps a predicate p to

a pair p~x, cq, where ~x is the arguments of p and c is the constraint which is satisfiable if and

only if p is derivable.

The structure of the derivation pool construction remains the same. We highlight the

changes in Figure 28. The main difference is that now when a cycle is reached, the annota-

tions are used to break the cycle. The working set P , which contains the set of nodes that

can be processed next, includes not only predicate nodes that do not have incoming edges,

but also includes nodes that depend on only body tuples that have annotations. Consider

the following scenario: Rule r1 derives p and has two body tuples q1 and q2. Let’s assume

that there is no edge from q1 to r1, as q1 has been processed and q2 has an annotation in

A. In this case, we will place p in the working set. The above mentioned change is encoded

74

in the new RemoveEdges function in Figure 28.

The second change is in constructing derivation pool entries for a predicate p. In the non-

recursive case, each derivation tree of a predicate p corresponds to the application of a rule

to the list of derivation trees for the body tuples of that rule. In the recursive case, if one

of the body tuples, say q, is on a cycle, when we process p, q’s entries in dpool have not

been constructed. However, the constraint under which q can be derived is given in the

annotation A. In this case, we use prec, qp~xqq as a place holder for derivations for q, and

use the constraint in A as the constraint for this derivation. The change is reflected in the

LookUp function for collecting possible derivations of the body predicates (lines 21-23).

Finally, annotations need to be verified. The GenDs function checks the correctness of

the annotations after all the predicates have been processed (lines 5-15). For a recursive

predicate, the derivation pool maps it to a summary constraint and a list of possible deriva-

tions (a pair pc,∆q). The requirement of the summary constraint for p is that it has to

be satisfiable if and only if there is at least one derivation for the recursive predicate p.

That is, this summary constraint has to be logically equivalent to the disjunction of the

constraints associated with all possible derivations of p in ∆. We consider two cases for a

predicate on a cycle of the dependency graph: (1) there is an annotation for it in A and (2)

there is no annotation. For both cases, we need to collect all the possible constraints for

deriving p from ∆. Function EX Disj computes the disjunction of constraints in ∆. Each

constraint is existentially quantified over the arguments that do not appear in p. For case

(1), we need to check that the annotation is logically equivalent to the disjunction of the

constraints for all possible derivations of p (line 10). If this is the case, then the annotated

constraint together with ∆ is returned; otherwise, an error is returned, indicating that the

invariant doesn’t hold. For case (2), we return the disjunctive formula returned by EX Disj

(Lines 15). When p is not recursive, only ∆ is returned (line 17).

75

4.3.2. Property Query

We use the same property query algorithm for non-recursive program. This obviously

has limitations, because the derivations of recursive predicates are not expanded. The

imprecision of the analysis comes from the following two sources. The first is that derivations

represented as prec, pp~xqq may contain predicates needed by the antecedent of the property

(the qis in ϕ). Without expanding these derivations, the algorithm may report that ϕ

is violated because qis cannot be found, even though this is not the case in reality. The

second is that network constraints cannot be accurately checked. When we find a suitable

derivation d that contains all the qis such that cq holds, checking the network constraints

on d requires us to expand prec, pp~xqqs in d. The algorithm may report that the property

holds, even though, the witness it finds does not satisfy the network constraints. Similarly,

when the algorithm reports that the property does not hold, the counterexample may not

satisfy the network constraints. For the analysis to be precise, we would need annotations

for recursive predicates to provide invariants for recursive predicates. Our case studies do

not require annotations. Expanding the algorithm to handle recursive predicates precisely

remains our future work.

4.3.3. Analysis of the Algorithms

Correctness. Similar to the non-recursive case, we prove the correctness of derivation

pool construction. We only prove the soundness of the query algorithm. Because derivations

of recursive predicates are summarized as prec, pp~xqq, the correctness of the derivation pool

construction needs to consider the unrolling of prec, pp~xqq.

First, we define a relation dpool $ dk, σk k`1 dk`1, σk`1 (for k ě 0) to mean that a

derivation dk with the substitution σk can be unrolled using derivations to dpool to another

derivation dk`1 and a new substitution σk`1. The rules defining this relation allow the

prec, q leafs in the derivation to be gradually expanded, starting from the root and moving

up the tree.

76

We write dk to denote the derivation after unrolling a derivation d for a sequence of k steps:

d, σ0 0 d, σ0 1 d1, σ1 2 . . . i di, σi i`1 di`1, σi`1 i`1 . . . k dk, σk. The i`1

rules ensure that each di has no prec, q leafs from the root up to the i ´ 1th level Step

di, σi i`1 di`1, σi`1 expands the prec, q leafs at the ith level of di, and thus di`1 has no

prec, q leafs from the root up to the ith level.

Figure 29 shows the inference rules for proving correctness of recursive cases. Rule Base

does not extend the derivation. Rule WkInd weakens the index from k to a larger number

n when derivation d does not contain any recursive subderivations of form prec, q. Given a

derivation prID, pp~xq, d1:: . . . ::dn::nilq with no prec, q leafs from the root up to the k ´ 1th

level, and whose subderivations d1, . . . , dn that can be expanded to subderivations d11, . . . , d1n

which have no prec, q leafs from the root to the k ´ 1th level, then rule Rnrec expands

prID, pp~xq, d1:: . . . ::dn::nilq to derivation prID, pp~xq, d11:: . . . ::d1n::nilq, which has no prec, q

leafs from the root up to the the kth level. The last rule, Rrec, is the key rule that expands

the derivation of the recursive predicate p at the root in one step. Recursive derivation

prec, pp~xqq with substitution σ is expanded to a derivation d:pp~xq P ∆p whose constraint c

is satisfiable for some substitution σ Y σ1.

We write d0, σ0 ÞÝÑ dk, σk as shorthand notation for the above sequence of steps.

Lemma 6 shows that the derivation pool construction algorithm is correct with respect to an

unrolling of the derivation. If a predicate p is derivable, then the derivation pool will have

an entry for for p which can be unrolled into that concrete derivation. For every natural

number `, if there is a skeleton derivation d for p in the derivation pool and the corresponding

constraint to derive d is satisfiable, then either we can unroll d to a concrete derivation d1 for

p within ` steps, where d1 does not contain any subderivations of form prec, qp ~xqqq, or after

unrolling d for ` steps, the resultant derivation d1 contains some recursive subderivations of

form prec, qp ~xqqq, and if every prec, qp ~xqqq can be unrolled to a concrete derivation, then the

derivation d for predicate p can be unrolled to a concrete derivation.

77

We state the key points of the lemma in this section.

Lemma 6 (Correctness of derivation pool construction (recursive)). DGraphpprogq “ G,

and GenDPoolpG,Aq “ dpool

1. If prog, B (d:pp~tq, then either p is not on a cycle in G and Dpcp~xcq, d1p ~xd1q:pp~xqq P

dpoolppq, Dσ2d where (cp~xcqσ
2
d| ~xc, s.t. using substitution σ2d, d1p ~xd1q can be unrolled

into d, or p is on a cycle in G and Dpcpp~xq,∆pq P dpoolppq, Dσ2d s.t. (cpp~xqσ
2
d|~x, s.t.

using substitution σ2d, prec, pp~xqq can be unrolled into d.

2. @` P N,

(a) If pcp~xcq, dp ~xdq:pp~xqq P dpoolppq and (cp~xcqσ, either Dd1p ~xdq s.t. d1p ~xd
1
q does

not contain any prec, q, dp ~xdq can be unrolled to d1p ~xd
1
q in ` steps, and d1p ~xd

1
q

can be unrolled to d with an appropriate extension of substitution σ, or Dd1p ~xd1q

s.t. d1p ~xd1q contains some prec, sp ~xsqq, dp ~xdq can be unrolled to d1p ~xd1q in ` steps,

and @prec, sp ~xsqq P d1p ~xd1q, Dds, `s s.t. prec, sp ~xsqq can be unrolled to ds with an

appropriate extension of substitution σ| ~xs implies Dd2 s.t. prog, B (d2 and dp ~xdq

and be unrolled to d2 with an appropriate extension of substitution σ.

(b) If pcrec:pp~xq,∆pq P dpoolppq and (crec:pp~xqσ, then either Dd1p ~xdq s.t. d1p ~xd1q does

not contain any prec, q, prec, pp~xqq can be unrolled to d1p ~xd1q in ` steps, and d1p ~xd1q

can be unrolled to d with an appropriate extension of substitution σ, or Dd1p ~xd1q

s.t. d1p ~xd1q contains some prec, sp ~xsqq, prec, pp~xqq can be unrolled to d1p ~xd
1
q in `

steps, and @prec, sp ~xsqq P d1p ~xd1q, Dds, `s s.t. prec, sp ~xsqq can be unrolled to ds

with an appropriate extension of substitution σ| ~xs implies Dd2 s.t. prog, B (d2

and prec, pp~xqq can be unrolled to d2 with an appropriate extension of substitution

σ.

As we discussed in Section 4.3.2, we cannot show a general correctness theorem without

annotations for recursive predicates. We can only prove the soundness of the algorithm

when there is no network constraint.

78

Lemma 7 (Soundness of property query).

ϕ “ @ ~x1.p1p ~x1q ^ ¨ ¨ ¨ ^ @ ~xn.pnp ~xnq ^ cpp ~x1 ¨ ¨ ¨ ~xnq Ą

D~y1.q1p~y1q ^ ¨ ¨ ¨ ^ D ~ym.qmp ~ymq ^ cqp ~x1 ¨ ¨ ¨ ~xn, ~y1 ¨ ¨ ¨ ~ymq

DGraph(prog) = G and GenDPoolpG,Aq “ dpool and

CkProppdpool, ϕq “ valid implies @B, prog, B (ϕ.

Time complexity. The time complexity of the property query algorithm on recursive pro-

grams is the same as that of non-recursive programs. More concretely, we also use CkProp

to check properties on recursive programs, so the time complexity remains OppDpq
npDqq

mtq.

In addition, the estimate about Dp and Dq remains the same as in non-recursive case. Ob-

serve that the height of a derivation in the derivation pool is still bounded by R. This is

because in the derivation pool construction algorithm (Figure 28), each rule node is pro-

cessed at most once. Therefore a path in a derivation from the root predicate to any leaf

predicate could have at most R rules. So we directly have Dq “ nWR. For Dp, Theorem 5

also holds true. The base case is unchanged. For the inductive step, the body tuple now

could be a recursive tuple with user’s annotation. However, since we do not expand the

derivations for recursive tuples, but collect its annotation as a constraint, the number of

derivations for the recursive tuple is effectively one, which satisfies the inductive hypothesis.

The rest of the proof is the same. In conclusion, Theorem 5 remains true. Together with

the bound on the height of derivations (i.e., R), this means that Dp “ OpRW
R
q. And the

whole complexity remains unchanged.

4.4. Case Study

We apply our tool to the verification of software-defined networking (SDN) applications.

SDN is an emerging networking technique that allows network administrators to program

the network through well-defined interfaces (e.g., OpenFlow protocol [57]). SDNs intention-

ally separate the control plane and the data plane of the network. A centralized controller is

introduced to monitor and manage the whole network. The controller provides an abstrac-

tion of the network to network administrators, and establishes connections with underlying

79

switches. Recently, declarative programming languages have been used to to write SDN

controller applications [61]. Like any program, these applications are not guaranteed to be

bug-free. We show the effectiveness of our tool in validating and debugging several SDN

applications. We demonstrate that the tool can unveil problems in the process of SDN ap-

plication development, ranging from software bugs, incomplete topological constraints and

incorrect property specification. All verifications in our case study are completed within

one second.

4.4.1. Verification Process

We first provide a high-level description of the verification process. When analyzing a

property, the user is expected to provide three types of inputs: (1) formal specification

of the property in the form discussed in Section 5.2; (2) formal specification of initial

network constraints (e.g., topological constraints and switch default setup); and (3) formal

specification of invariants on recursive tuples.

Our tool takes the above user specifications along with the NDlog program as inputs. It first

checks the correctness of the invariants on recursive tuples. After invariants are validated,

the tool runs the main algorithm for verification, and outputs either “True” if the property

holds, or “False” if the property is not valid. For invalid properties, the tool also generates

a concrete counterexample to help the programmer debug the program.

4.4.2. Ethernet Source Learning

The first case study we consider is Ethernet source learning, which allows switches in a

network to remember the location of end hosts through incoming packets. More specifically,

three kinds of entities are deployed in the network: (1) end hosts (servers or desktops)

at the edge of the network that send packets to the network through connected switches,

(2) switches that forward a packet if the packet matches a flow entry in the forwarding

table, or relay the packet to the controller for further instruction if there is a table miss,

and (3) a controller that connects to all switches in the network. The controller learns the

80

position of an end host through packets relayed from a switch, and installs a corresponding

flow entry in the switch for future forwarding.

Encoding We encode the behaviors of each component in NDlog. Figure 30 presents the

NDlog encoding of Ethernet Source Learning (progESL). In a typical scenario, an end host

initiates a packet and sends it to the switch that it connects to (rh1). The switch recursively

looks up its forwarding table to match against the received packet (rs1, rs2). If a flow entry

matches the packet, it is forwarded to the port indicated by the “Action” part of the entry

(rs3). Otherwise, the switch wraps the packet in an OpenFlow message, and relays it to the

controller for further instruction (rs5). On receiving the OpenFlow message, the controller

first extracts the location information of the source address in the packet (the OpenFlow

message registers incoming port for each packet), and installs a flow entry matching the

source address in the switch (rc1). The controller then instructs the switch to broadcast

the mismatched packet to all its neighbors other than the upstream neighbor who sent the

packet (rc2). Rules rs5 and rs6 specify the reaction of the switch corresponding to Rules

rc1 and rc2 respectively — the switch either inserts a flow entry into the forwarding table

(rs5) or broadcasts the packet (rs6) as instructed.

Network constraints We use the basic network constraints in Figure 31 to limit the

topology of the network that runs Ethernet source learning.

We demand that an end host always initiates packets using its own address as source, and the

switch it connects to cannot be the source or the destination (constraints on initPacket).

In addition, the controller cannot share addresses with switches (constraints on ofconn),

and a switch cannot have a link to itself (constraints on single swToHst). Also, each switch

should have only one link connecting the neighbor host, and no two hosts can connect to

the same port of a switch (constraints on any two swToHsts).

Verification results We verify a number of safety properties that are expected to hold

in a network running the Ethernet Source Learning program. Table 3 lists all the properties

81

of the program that we investigate. Here we discuss properties in detail.

Property ϕESL2 specifies that whenever an end host receives a packet not destined to it,

the switch that it connects to has no matching flow entry for the destination address in the

packet. Though this property is seemingly true, our tool returns a negative answer, along

with a counterexample shown in Figure 32. The counterexample reveals a scenario where

an endhost (H4) receives a broadcast packet destined to another machine (H3) (Execution

trace (1) in Figure 32), but the switch it connects to (S1) has a flowEntry that matches the

destination MAC address in the packet (Execution trace (2) in Figure 32).

In the counterexample, switch S1 receives a packet xSrc : H6, Dst : H3y through port

2 from the upstream switch S2 (1). Since S1 does not have a flow entry for the desti-

nation address H3, it relays the packet wrapped in an OpenFlow message (i.e. ofPacket)

to the controller C1(2). The controller then instructs S1 to broadcast the packet to all

neighbors except S2 (3). However, before Server H4 receives the broadcast packet, a new

packet xSrc : H3, Dst : H4y could reach switch S1(4), triggering an ofPacket message

to the controller (5). The controller would then set up a new flow entry at switch S1,

matching destination H3 (6 , 7). It is possible that due to network delay, server H4 receives

its copy of the broadcast packet just now(8). Therefore, the execution trace generates

packet (H4,S1,H6,H3), swToHst (S1,H4,1) (i.e. the link between S1 and H4), and flowEntry

(S1,H3,2,1), with Mac ““ DstMac (H3 “ H3).

Our tool also generates a counterexample for another seemingly correct property—ϕESL3 .

This property specifies that whenever an end host receives a packet destined to it, the

switch it connects to has a flowEntry matching the end host’s MAC address. The generated

counterexample (Figure 33) shows that a packet could reach the correct destination by

means of broadcast — a corner case that can be easily missed with manual inspection. In

the counterexample, switch S1 receives a packet destined to server H4(1). Since there is

no flow entry in the forwarding table to match the destination address, switch S1 informs

the controller of the received packet (2), and further broadcasts the packet under the

82

controller’s instruction (3). In this way, server H4 does receive a packet destined to it (4),

but switch S1 does not have a flow entry matching H4.

With further inspection, the above counterexamples, are attributed to incorrect specification

of network properties, rather than bugs in the programs. In the first case, a stricter property

would specify that a received broadcast message indicates an earlier table miss. While in

the second one, the property fails to consider the possibility of specific broadcast messages

in the execution.

4.4.3. Firewall

Our second case study is a stateful firewall, which is usually deployed at the edge of a

corporate network to filter untrusted packets from the Internet. Compared to a stateless

firewall, which makes decision purely based on specific fields of a packet, a stateful firewall

allows richer access control depending on flow history. For example, the firewall can allow

traffic from an outside end host to reach machines inside the local domain only if the

communication was initiated by the internal machines.

Encoding We implement a SDN-based stateful firewall, which can set up filtering policies

under the instruction of the controller. The detailed encoding of the program can be found

in Figure 35. The firewall enforces the following policy: end-hosts in the corporate domain

can send traffic to the outside world but, for security reasons, traffic from an end-host

outside the domain can only enter the domain if that end-host has previously received

traffic from some end-host within the domain. The network is configured as follows. Two

types of hosts are connected to a switch: (i) trusted hosts (within the organization) via

port 1; and (ii) untrusted hosts (outside the organization) via port 2. Packets from trusted

hosts are always forwarded to untrusted hosts. Packets from untrusted hosts are forwarded

to trusted hosts only if the source host has previously received a packet from a trusted host.

Key tuples generated at each node executing the program are listed in Table 4. Table 5

summarizes all the rules in the firewall program.

83

Network constraints The network constraints for the base tuples in the firewall program

are given in Figure 36.

Verification results We verify a number of properties about the stateful firewall, which

are listed below. All the properties are valid.

Property ϕFW 1 states that for every packet a trusted host receives from an untrusted host

via Switch, in the past the switch has received a packet sent from some trusted host (via

port 1) to the untrusted host (via port 2). Property ϕFW 2 states that if the flow table on

the switch contains an entry between Src (via untrusted port) and Dst (via trusted port),

then in the past the switch has received a packet sent from some Host (via trusted port) to

Src. Property ϕFW 3 states that the trusted controller memory records a connection between

Switch and a host, then in the past some trusted source had sent a packet to that host.

4.4.4. A Weak Firewall

To further evaluate our tool, we modify the above stateful firewall slightly to construct

a “weaker” firewall. The new firewall differs by not requiring packets received from the

trusted port to be forwarded to the Internet.

Encoding We present our implementation of the program (progWeakFW) in Figure 38.

Key tuples generated at each node executing the program are listed in Table 6. The firewall

forwards traffic from trusted hosts in the local domain without interference (r1), and also

notifies the controller of the destination address in the packet (r2). When the firewall

receives a packet from the Internet, it relays the packet to the controller for further decision

(r4). If the source address was once registered at the controller, the controller would install

a flow entry in the firewall (r5), allowing packets of the same flow to access the internal

domain in the future (r3).

Network constraints The network constraints for this modified version of firewall are

shown in Figure 39. They are similar to those given in the case study of firewall (Sec-

84

tion 4.4.3), but with an additional link tuple.

Verification results We check the property ϕWeakFW over the weak firewall:

ϕWeakFW “

@Host,Port,Src,SrcPort,Switch,

pktReceivedpHost,Port,Src,SrcPort,Switchq Ą

DCntrl, trustedControllerMemoryp@Cntrl,Switch,Srcq

The property specifies that source destinations of all packets reaching internal machines are

trusted by the controller. Surprisingly, our tool gives a counterexample for this property

(Figure 34), which depicts the scenario that an internal machine H3 sends a packet to

another internal machine H4 in the same domain through the firewall F1. Because the

controller C1 never registers local machines, the property is violated.

Despite its simplicity, we find the counterexample interesting, because it can be interpreted

in different ways; each corresponds to a different approach to fixing the problem. The

counterexample can be viewed as revelation of a program bug. The user can add a patch

to the program and re-verify the property over the updated program. Alternatively, the

counterexample could be linked to incomplete specification of network constraints that

internal machines should never send internal traffic to the firewall. The fix would then

be to insert extra constraints over base tuples of the program. In addition, the problem

could also stem from the property specification, since users may only care about traffic

from outside the domain. In this case, we can change the property specification, specifying

that if a packet is from an external machine, the source address must be registered at the

controller before. In real deployment, it is up to the user to decide which interpretation is

most appropriate.

4.4.5. Load Balancing

The third case study is load balancing. When receiving packets to a specific network service

(e.g., web page requests), a typical load balancer splits the packets on different network

85

paths to balance traffic load. There are a number of strategies for load balancing, e.g.,

static configuration or congestion-based adjustment. In our case study, we implement a load

balancer which load balances traffic towards a specific destination address, and determines

the path of a packet based on the hash value of its source address.

Encoding Figure 40 presents our implementation of load balancer implemented in NDlog

(progLB). Key tuples generated at each node executing the program are listed in Table 7.

We summarize the program in Table 8.

When the load balancer receives a packet, it first inspects its destination address. If the

destination address matches the address that the load balancer is responsible for, the load

balancer would generate a hash value of the source destination of the packet (r1). The hash

value is used to select the server to which the packet should be routed. The load balancer

replaces the original destination address in the packet with the address of the selected server,

and forwards the packet to the server (r2). In addition, the load balancer has a default rule

that forwards traffic not destined to the designated address without interference (r3).

Network constraints The network constraints are shown in Figure 41.

Verification result The property that we verify for load balancing is called flow affinity,

that is, if two servers receives packets requesting the same service—which means the packets

share the same initial destination address—the source addresses of the packets must be

different. Formally:

@Server1 ,Server2 ,Src1 ,Src2 ,

recvPacketpServer1 ,Src1 ,ServiceAddrq

^recvPacketpServer2 ,Src2 ,ServiceAddrq

^Server1 ‰ Server2 Ą

Src1 ‰ Src2

86

The property does not hold in the given protocol specification, and a counterexample is

given by our tool (Figure 42). In the counterexample, two load balancers responsible for

different network service could co-exist in the network, and if a server sends packets to both

load-balancers, requesting the same service, it is possible that the packets are routed to

different servers.

Similar to the case of the firewall, the programmer can fix the counterexample of the load

balancer by patching the program, adding network assumption (e.g., assuming no server is

connected to two load-balancers), or changing property specification (e.g., “load-balanced

packets that are forwarded out of different ports of the load balancer do not share the same

source address”).

4.4.6. Ethernet Address Resolution

The final case study we focus on is the Address Resolution Protocol (ARP) in an Ethernet

network. End hosts use ARP to request the destination MAC address corresponding to an

IP address that they want to communicate to. Traditionally, the ARP requests are broadcast

through the domain. In our case study, we replace the broadcast with a centralized controller

that answers ARP requests.

Encoding Figure 43 presents an implementation of our NDlog encoding of SDN-based

ARP (progARP). Key tuples generated at each node executing the program are listed in

Table 9.

Network constraints The network constraints of ARP are defined in Figure 44.

Verification results We verified two safety properties on the ARP program (Figure 10).

All properties are valid.

4.4.7. Discussion

We discuss our experience of using the tool and insights obtained from the case studies.

87

Overhead of Annotations Our tool demands that the user specify annotations for re-

cursive predicates in recursive programs (Section 4.3.1). Since this is a manual process and

requires domain-specific knowledge of the user, the whole verification time depends largely

on the time spent in annotation specification. Based on our empirical experience when

verifying recursive programs in the case study (e.g., Ethernet source learning), most anno-

tations are straightforward – which involve simple equality/inequality between attributes,

and in certain cases, could be empty at all (e.g., ϕESL4 in Table 3). In most scenarios, the

discovery of annotations takes only several minutes.

Cause of property violation The counterexamples we discuss above reveal a common

pattern: when a predicate in the program has multiple derivations, proving properties over

the predicate becomes harder. The situation is even worse when a property involves multiple

predicates, each with multiple derivations. The increased complexity of predicate deriva-

tions makes it error-prone for human programmers to write correct programs or specify

correct properties, and serves as the core cause of property violation. Naturally, the fixes

we proposed for counterexamples generally fall into two categories: (1) enriching the prop-

erty specification to include the missing derivations, or (2) changing the program to remove

the uncovered derivations.

Iterative application development Another observation is that reasonable network

assumptions (e.g., topological constraints) helps prune scenarios that would not appear in

actual executions, and generate insightful counterexamples. For example, a counterexam-

ple may suggest a topology where a switch has a link to itself. A programmer may start

with trivial network assumptions and let the tool guide the exploration of corner cases and

gradually add (implicit) network assumptions that are not obvious to the programmer. In

fact, our tool enables the programmer to iteratively develop applications. The generated

counterexamples could help the programmer understand (1) applicable domain of the pro-

88

gram (feedback of missing network constraints); (2) implementation correctness (feedback

of bugs in the program); and/or (3) expected behavior of the program (feedback of incor-

rect property specification). After the programmer fix the problem, she or he can redo the

verification repeatedly until the specified property holds.

89

1: function GenDs(G, dpool, pnID, p:τq)
2: ∆ Ð tu

3: for each rule with ID rID where (rID,nID) in G do
4: ∆ Ð ∆YGenDRule(G, dpool, pnID, p:τq,rID)
5: if pnID, p:τq is on a cycle then
6: (* gather all constraints *)
7: p~x, cq Ð Ex DisJ(∆)
8: if Appq “ p~y, cAq then
9: (* check annotation *)

10: if Check sat pcAr~x{~ysôcq“psat, q then
11: return annotation error
12: else
13: return pcA,∆q
14: else
15: return pc,∆q
16: else
17: return ∆
18: end function
19:
20: function LookUp(dpool, qp~xq)
21: if q P A then
22: p~y, cAq Ð Apqq
23: return p~y{~x, cA, prec, qp~yqq::nilq
24: else
25: if dpoolpqq “ ∆ then
26: return List.Map (extractD ~x) ∆
27: else
28: dpoolpqq “ pcqp~yq,∆qq

29: return p~y{~x, c, prec, qp~yqq::nilq
30: end function
31:
32: function LookUpRec(dpool, qp~xq)
33: if dpoolpqq “ ∆ then
34: return List.Map (extractD ~x) ∆
35: else
36: dpoolpqq “ pcqp~yq,∆qq

37: return List.Map (ExtractD ~x) ∆q

38: end function
39:
40: function RemoveEdges(P , E, G)
41: remove outgoing edges of nID from E
42: for each rID with no edges of form p , rIDq in E do
43: remove edges (rID, nID) from E
44: if pnID, p : τq has no incoming edges in E then
45: add pnID, p : τq to P
46: if every pnID1, q : τ 1q s.t. pnID1, rIDq, prID,nIDq P E, pnID1, q : τ 1q in A then
47: add pnID, p : τq to P
48: end function

Figure 28: Construct derivation pools for recursive programs

90

Base
dpool $ d, σ 0 d, σ

WkInd
dpool $ d, σ k d, σ k ă n d does not contain prec, q as subderivations

dpool $ d, σ n d, σ

Rnrec
@i P r1, ns, dpool $ di, σ k d

1
i, σi σ1 “

Ťn
i“1 σi

dpool $ prID, pp~xq, d1:: . . . ::dn::nilq, σ k`1 prID, pp~xq, d11:: . . . ::d1n::nilq, σ1

Rrec

dpoolppq “ pcp,∆pq pcp~zcq, dp~zdq:pp~zqq P ∆p ~zd
1
“ freshp~zdz~zq

(cp~zcqr~zd
1
{p~zdz~zqsr~x{~zspσ Y σ

1q

dpool $ prec, pp~xqq, σ 1 dp~zdqr~zd
1
{p~zdz~zqsr~x{~zs, σ Y σ

1

Figure 29: Inference rules for correctness proof of recursive NDlog programs

91

/* Controller program */
rc1 flowMod(@Switch, SrcMac, InPort) :-

ofconn(@Controller, Switch),
ofPacket(@Controller, Switch, InPort, SrcMac, DstMac).

rc2 broadcast(@Switch, InPort, SrcMac, DstMac) :-
ofconn(@Controller, Switch),
ofPacket(@Controller, Switch, InPort, SrcMac, DstMac).

/* Switch program */
rs1 matchingPacket(@Switch, SrcMac, DstMac, InPort, TopPriority) :-

packet(@Switch, Nei, SrcMac, DstMac),
swToHst(@Switch, Nei, InPort),
maxPriority(@Switch, TopPriority).

rs2 matchingPacket(@Switch, SrcMac, DstMac, InPort, NextPriority) :-
matchingPacket(@Switch, SrcMac, DstMac, InPort, Priority),
flowEntry(@Switch, MacAdd, OutPort, Priority),
Priority > 0, DstMac != MacAdd, NextPriority := Priority - 1.

rs3 packet(@OutNei, Switch, SrcMac, DstMac) :-
matchingPacket(@Switch, SrcMac, DstMac, InPort, Priority),
flowEntry(@Switch, MacAdd, OutPort, Priority),
swToHst(@Switch, OutNei, OutPort),
Priority > 0, DstMac == MacAdd.

rs4 ofPacket(@Controller, Switch, InPort, SrcMac, DstMac) :-
ofconn(@Switch, Controller),
matchingPacket(@Switch, SrcMac, DstMac, InPort, Priority),
Priority == 0.

rs5 flowEntry(@Switch, DstMac, OutPort, Priority) :-
flowMod(@Switch, DstMac, OutPort),
ofconn(@Switch, Controller),
maxPriority(@Switch, TopPriority), Priority := TopPriority + 1.

rs6 packet(@OutNei, Switch, SrcMac, DstMac) :-
broadcast(@Switch, InPort, SrcMac, DstMac),
swToHst(@Switch, OutNei, OutPort), OutPort != InPort.

/* Host program */
rh1 packet(@Switch, Host, SrcMac, DstMac) :-

initPacket(@Host, Switch, SrcMac, DstMac),
hstToSw(@Host, Switch, OutPort).

rh2 recvPacket(@Host, SrcMac, DstMac) :-
packet(@Host, Switch, SrcMac, DstMac),
hstToSw(@Host, Switch, InPort).

Figure 30: NDlog implementation of progESL

92

ϕnet1 initPacketpHost, Switch, Src,Dstq Ą
Host ‰ Switch ^ Host “ Src ^
Host ‰ Dst ^ Switch ‰ Dst.

ϕnet2 ofconnpController, Switchq Ą
Controller ‰ Switch.

ϕnet3 swToHstpSwitch,Host, Portq Ą
Switch ‰ Host ^ Switch ‰ Port ^ Host ‰ Port.

ϕnet4 swToHstpSwitch1, Host1, Port1q ^
swToHstpSwitch2, Host2, Port2q Ą
pSwitch1 “ Switch2 ^ Host1 “ Host2 Ą
Port1 “ Port2q ^

pSwitch1 “ Switch2 ^ Port1 “ Port2 Ą
Host1 “ Host2q.

Figure 31: Network constraints for Ethernet source learning

C1

S1 H4 2 1

packet
NextHop:S1,
PrevHop:S2,
Source: H6,
Destination:H3

S2

ofPacket
Switch:S1,
Controller:C1,
InPort:2,
Source: H6,
Destination:H3

broadcast
Switch: S1,
Controller: C1,
InPort: 2,
Source: H6,
Destination:H3

packet
NextHop:H4,
PrevHop:S1,
Source: H6,
Destination:H3

①
② ③

⑧

Execution Trace (1)

packet
NextHop:S1,
PrevHop:S2,
Source: H3,
Destination:H4

ofPacket
Switch:S1,
Controller:C1,
InPort:2,
Source: H3,
Destination:H4

flowMod
Switch: S1,
Match: H3,
Port: 2

⑤
⑥

⑦

flowEntry
Switch: S1,
Match: H3,
Port: 2,
Priority: 1

④
C1

S1 H4 2 1 S2

Execution Trace (2)

Figure 32: A counterexample for property ϕESL2

93

Prop Description Formal specification Result

ϕESL1

If the switch has
a routing entry for
a host with MAC
address A, it has
received a packet
sourced from that
host in the past.

@Switch,Mac,OutPort,Priority,
flowEntrypSwitch,Mac,OutPort,

Priorityq
^Mac “ A Ą
DNei,DstMac,

packetpSwitch,Nei,Mac,DstMacq

true

ϕESL2

If an EndHost has
received a packet
that is not destined
for its MAC address,
the switch does not
have a routing entry
for that EndHost’s
MAC address.

@EndHost,Switch,SrcMac,DstMac,
InPort,OPort,Outport,Mac,Priority,
packetpEndHost,Switch,SrcMac,

DstMacq
^swToHstpSwitch,EndHost,OPortq
^flowEntrypSwitch,Mac,Outport,

Priorityq
^DstMac ‰ EndHost Ą
Mac ‰ DstMac

false

ϕESL3

If EndHost has re-
ceived a packet des-
tined for it, then the
switch has a flow en-
try for the EndHost.

@EndHost,Switch,SrcMac,
DstMac,OPort,

packetpEndHost,Switch,SrcMac,
DstMacq

^swToHstpSwitch,EndHost,OPortq
^DstMac “ EndHost Ą
DSwitch1,Mac,Outport,Priority,

flowEntrypSwitch1,Mac,Outport,
Priorityq
^Switch1 “ Switch ^Mac “ DstMac

false

ϕESL4

If the switch has a
flowEntry for a host
with mac address
Mac, then there has
been a flow table
miss in the past for
that particular host

@Switch,Mac,Outport,Priority,
flowEntrypSwitch,Mac,Outport,Priorityq
Ą

DSwitch1,SrcMac,DstMac, InPort,
Priority1,
matchingPacketpSwitch1,SrcMac,

DstMac, InPort,
Priority1q

^Switch1 “ Switch ^ SrcMac “ Mac
^InPort “ Outport ^ Priority1 “ 0

true

Table 3: Safety properties of progESL and verification results

94

packet
NextHop:S1,
PrevHop:S2,
Source: H6,
Destination:H4)

ofPacket
Switch:S1,
Controller:C1,
InPort:2,
Source: H6,
Destination:H4

broadcast
Switch: S1,
Controller: C1,
InPort: 2,
Source: H6,
Destination:H4

packet
NextHop:H4,
PrevHop:S1,
Source: H6,
Destination:H4

①
② ③

④

C1

S1 H4 2 1 S2

Figure 33: A counterexample for property ϕESL3

pktIn
Firewall: F1,
Source: H3,
InPort: 2(Trust),
Destination:H4

pktReceived
Destination: H4,
OutPort: 1(Trust),
Source: H3,
InPort:2,
Firewall: F1

①
②

Internet

?

C1

F1 H4 2 1 H3

Figure 34: A counterexample for property ϕWeakFW

Predicate Description
pktReceivedp@Dst,DstPort,Src,
SrcPort,Switchq

Host Dst has received a packet via the Switch
through port DstPort, that was originally
send by host Src through port SrcPort

pktInp@Switch,Src,SrcPort,Dstq A packet sent by host Src through port
SrcPort with target host Dst appeared on the
switch

trustedControllerMemoryp@Controller ,
Switch,Hostq

Controller stores a link between Switch an
(untrusted) Host.

connectionp@Switch,Controllerq There is a connection between Switch and
Controller

perFlowRulep@Switch,Src,SrcPort,
Dst,DstPortq

Switch stores in its memory that untrusted
host Src is allowed to send packets to trusted
host Dst

pktFromSwitchp@Controller ,Switch,
Src,SrcPort,Dstq

Switch asks Controller to check if untrusted
host Src is allow to send a packet to host Dst

Table 4: Relations for progFW

95

#define TRUSTED_PORT 1
#define UNTRUSTED_PORT 2

/* (@Switch) Program
* a packet from a trusted host via TRUSTED_PORT
* appeared on switch without a forwarding rule
* we know its from a trusted host since it came via
* TRUSTED_PORT forward packet to untrusted hosts
*/

r1 pktReceived(@Dst, Uport, Src, Tport, Switch):-
pktIn(@Switch, Src, Tport, Dst),
Uport := UNTRUSTED_PORT,
Tport == TRUSTED_PORT.

r2 trustedControllerMemory(@Controller,
Switch, Dst):-

pktIn(@Switch, Src, Tport, Dst),
connection(@Switch, Controller),
Tport == TRUSTED_PORT.

/* (@Switch) Program
* a packet from with a forwarding rule appears on
* the switch Forward according to the rule
* The packet may be from a trusted/untrusted source
*/

r3 pktReceived(@Dst, PortDst, Src, PortSrc, Switch):-
pktIn(@Switch, Src, PortSrc, Dst),
perFlowRule(@Switch, Src, PortSrc, Dst, PortDst).

/* (@Switch) Program
* Packet from untrusted host appeared on
* switch Send it to the controller to check
* if it is trusted
*/

r4 pktFromSwitch(@Controller, Switch, Src,
Uport, Dst):-

pktIn(@Switch, Src, Uport, Dst),
connection(@Switch, Controller),
Uport == UNTRUSTED_PORT.

r5 perFlowRule(@Switch, Src, Uport, Dst, Tport):-
pktFromSwitch(@Controller, Switch, Src, Uport, Dst),
trustedControllerMemory(@Controller, Switch, Src),
Uport == UNTRUSTED_PORT,
Tport := TRUSTED_PORT.

Figure 35: NDlog implementation of progFW

96

Rule Summary
r1 a packet from a trusted host, with destination an untrusted host, appeared on

switch without a forwarding rule. Forward the packet to the untrusted host.
r2 A packet from a trusted host appeared on switch without a forwarding rule.

Insert the target host Dst of the packet into trusted controller memory.
r3 A packet from with a forwarding rule appears on the switch, which forwards

it according to its flow table
r4 A packet from an untrusted host appeared on switch, which sends it to the

controller to check if it can forward the packet to its intended destination
r5 Controller checks a packet originally sent by an untrusted host, found that

there is a previous link between that untrusted host and the switch, and tells
the switch that it can forward the packet by inserting a per flow rule into the
switch for that untrusted host

Table 5: Summary of progFW encoding

ϕFW
net1 connectionpSwitch, Controllerq Ą

Switch ‰ Controller
ϕFW
net2 pktInpSwitch,Src,SrcPort,Dstq Ą

Switch ‰ Src ^ Switch ‰ SrcPort
^Switch ‰ Dst ^ Src ‰ SrcPort
^Src ‰ Dst ^ SrcPort ‰ Dst

ϕFW
net3 pktInpSwitch1 ,Src1 ,SrcPort1 ,Dst1 q

^ pktInpSwitch2 ,Src2 ,SrcPort2 ,Dst2 q
^ Switch1 ‰ Switch2 ^ Src1 “ Src2 Ą

SrcPort1 “ SrcPort2

Figure 36: Network constraints for the firewall program

97

ϕFW 1 @Switch,Src,SrcPort,Dst,
pktReceivedpDst,PortDst,Src,PortSrc,Switchq
^ PortDst “ 1 ^ PortSrc “ 2 Ą
DController ,Host,HostPort,

pktInpSwitch,Host,HostPort,Srcq
^HostPort “ 1

ϕFW 2 @Switch,Src,SrcPort,Dst,DstPort,
perFlowRulepSwitch,Src,SrcPort,Dst,DstPortq
^ SrcPort “ 2 ^ DstPort “ 1 Ą
DHost,HostPort,

pktInpSwitch,Host,HostPort,Srcq
^ HostPort “ 1

ϕFW 3 @Controller ,Switch,Host,
trustedControllerMemorypController ,Switch,Hostq Ą
DSrc,SrcPort,

pktInpSwitch,Src,SrcPort,Hostq
^ SrcPort “ 1

Figure 37: Properties for the stateful firewall

Predicate Description
pktReceived(@Dst,DstPort,Src,
SrcPort,Switch)

Dst has received a packet via the Switch
through port DstPort, that was originally
send by host Src through port SrcPort

pktIn(@Switch,Src,SrcPort,Dst) A packet sent by host Src through port
SrcPort with target host Dst appeared on
the switch

trustedControllerMemory(@Controller ,
Switch,Host)

Controller stores a link between Switch
and an (untrusted) Host.

connection(@Switch, Controller) There is a connection between Switch and
Controller

perFlowRule(@Switch,Src,SrcPort,
Dst,DstPort)

Switch stores in its memory that un-
trusted host Src is allowed to send pack-
ets to trusted host Dst

pktFromSwitch(@Controller ,Switch,
Src,SrcPort,Dst)

Switch asks Controller to check if un-
trusted host Src is allow to send a packet
to host Dst

link(@Switch,Dst,PortDst) Switch is linked to Dst via PortDst

Table 6: Relations for progWeakFW

98

#define TRUSTED_PORT 1
#define UNTRUSTED_PORT 2

r1 pktReceived(@Dst, Uport, Src, Tport, Switch) :-
pktIn(@Switch, Src, Tport, Dst),
link(@Switch, Dst, Uport),
Tport == TRUSTED_PORT.

r2 trustedControllerMemory(@Controller,
Switch, Dst) :-

pktIn(@Switch, Src, Tport, Dst),
connection(@Switch, Controller),
Tport == TRUSTED_PORT.

r3 pktReceived(@Dst, PortDst, Src,
PortSrc, Switch) :-

pktIn(@Switch, Src, PortSrc, Dst),
link(@Switch, Dst, PortDst),
perFlowRule(@Switch, Src, PortSrc, Dst).

r4 pktFromSwitch(@Controller, Switch,
Src, Uport, Dst) :-

pktIn(@Switch, Src, Uport, Dst),
connection(@Switch, Controller),
Uport == UNTRUSTED_PORT.

r5 perFlowRule(@Switch, Src, Uport, Dst) :-
pktFromSwitch(@Controller, Switch, Src, Uport, Dst),
trustedControllerMemory(@Controller, Switch, Src),
Uport == UNTRUSTED_PORT,
Tport := TRUSTED_PORT.

Figure 38: NDlog implementation of progWeakFW

99

ϕWeakFW
net1 connectionpSwitch, Controllerq Ą

Switch ‰ Controller
ϕWeakFW

net2 pktInpSwitch,Src,SrcPort,Dstq Ą
Switch ‰ Src ^ Switch ‰ SrcPort
^Switch ‰ Dst ^ Src ‰ SrcPort
^Src ‰ Dst ^ SrcPort ‰ Dst

ϕWeakFW
net3 pktInpSwitch1 ,Src1 ,SrcPort1 ,Dst1 q

^ pktInpSwitch2 ,Src2 ,SrcPort2 ,Dst2 q
^ Switch1 ‰ Switch2 ^ Src1 “ Src2 Ą

SrcPort1 “ SrcPort2
ϕWeakFW

net4 linkpSwitch,Dst,PortDstq Ą
Switch ‰ Dst ^ Switch ‰ PortDst
^ Dst ‰ PortDst

ϕWeakFW
net5 linkpSwitch1 ,Dst1 ,PortDst1 q

^ linkpSwitch2 ,Dst2 ,PortDst2 q Ą
pSwitch1 “ Switch2 ^ Dst1 “ Dst2
Ą PortDst1 “ PortDst2 q

^ pSwitch1 “ Switch2 ^ PortDst1 “ PortDst2
Ą Dst1 “ Dst2 q

Figure 39: Network constraints for weak firewall

#define NUM_SERVERS 5

r1 packet(@LoadBalancer, Client, Server) :-
initPacket(@Client, Server, LoadBalancer).

r2 hashed(@LoadBalancer, Client, ServerNum, Server) :-
packet(@LoadBalancer, Client, Server),

designated(@LoadBalancer, DesignatedDst),
DesignatedDst == Server,
Value := f_hashIp(Client),
ServerNum := 1+f_modulo(Value, NumServers),
NumServers := NUM_SERVERS.

r3 recvPacket(@Server, Client, ServiceAddr) :-
hashed(@LoadBalancer, Client, ServerNum, ServiceAddr),
serverMapping(@LoadBalancer, Server, ServerNum).

r4 recvPacket(@Server, Client, Server) :-
packet(@LoadBalancer, Client, Server),
designated(@LoadBalancer, DesignatedDst),
Server != DesignatedDst,
ServiceAddr := Server.

Figure 40: NDlog implementation of progLB

100

initPacketp@Client,Server ,
LoadBalancer)

Client sends out a packet to LoadBalancer
with intended destination Server .

packetp@LoadBalancer ,Client,
Server)

LoadBalancer received a packet from Client
that has destination Server

designatedp@LoadBalancer ,
DesignatedDst)

For packets arriving on LoadBalancer
with destination address DesignatedDst,
LoadBalancer determines it path of a packet
based on the hash value of its source address.

hashedp@LoadBalancer ,Client,
ServerNum, Server)

LoadBalancer had received a packet whose
destination address matches the address that
it is responsible for. LoadBalancer generates
a hash value of the source address of Client
to obtain an integer ServerNum. ServerNum
is uniquely mapped to Server , to which the
packet is to be routed.

serverMappingp@LoadBalancer ,
Server ,ServerNum)

LoadBalancer stores the bijective mappings of
each destination server to a unique number,
ServerNum

recvPacketp@Server ,Client,
ServiceAddr)

Server has received a packet from source
Client via LoadBalancer .

Table 7: Relations for progLB

Event Rule Summary
Initialize Packets r1 A load balancer receives a packet that a client

has sent out.
A packet appearing on a
load balancer is destined to
the load balancer’s desig-
nated server

r2 A load balancer has received a packet to be
sent to its designated destination. It hashes
the source and uses that result modulo the
number of servers to get a number correspond-
ing to a server.

r3 The load balancer matches the integer ob-
tained by hashing to obtain a server to send
the packet to.

Packet appearing on a load
balancer is not to be sent to
its designated server

r4 The load balancer forwards the packet directly
to the destination as prescribed by the packet.

Table 8: Summary of progLB encoding

101

ϕLB
net1 initPacketpv1, v2, v3q Ą

v1 ‰ v2 ^ v2 ‰ v3 ^ v1 ‰ v3
ϕLB

net2 designatedpv4, v5q Ą
v4 ‰ v5

ϕLB
net3 designatedpv9, v10q ^ designatedpv11, v12q

^ v9 “ v11 Ą
v10 “ v12

ϕLB
net4 serverMappingpv6, v7, v8q Ą

v6 ‰ v7 ^ v7 ‰ v8 ^ v6 ‰ v8
ϕLB

net5 serverMappingpv13, v14, v15q
^ serverMappingpv16, v17, v18q
^ v13 “ v16 ^ v14 “ v17 Ą
v15 “ v18

ϕLB
net6 serverMappingpv13, v14, v15q

^ serverMappingpv16, v17, v18q
^ v13 “ v16 ^ v15 “ v18 Ą
v14 “ v17

Figure 41: Network constraints for load balancing

LB1
Service: W9

initPacket
Source: H4,
Destination:W9,
LoadBalancer:LB1

recvPacket
Destination: W8,
Source: H4,
Service: W9

①
②

④

LB2
Service: W10

initPacket
Source: H4,
Destination:W9,
LoadBalancer:LB2

③

recvPacket
Destination: W9,
Source: H4,
Service: W9

H4

w8

w9

Figure 42: A counter example for property ϕLB

102

/* Constants */
#define BROADCAST="ff:ff:ff:ff:ff", ALL_PORT=0, ARP_TYPE="ARP",
IPV4_TYPE="IPV4", CONTROLLER="controller ", ARP_REQUEST=1,
ARP_REPLY=2, ARP_PRIO=1

x/* Host program */
rh1 packet(@Switch, Host, DstMac, DstIp, SrcMac, SrcIp, Arptype) :-

linkHst(@Host, Switch, Port),
arpRequest(@Host, SrcIp, SrcMac, DstIp, DstMac),
Host == SrcIP, Arptype := ARP_REQUEST, DstMac == BROADCAST.

rh2 arpReply(@Host, SrcIp, SrcMac, DstIp, DstMac) :-
linkHst(@Host, Switch, Port),
packet(@Host, Switch, DstMac, DstIp, SrcMac, SrcIp, Arptype),
Arptype == ARP_REPLY, Type == ARP_TYPE, DstMac == Host.

/* Controller program */
rc1 hostPos(@Controller, SrcIp, Switch, InPort) :-

ofconnCtl(@Controller, Switch),
packetIn(@Controller, Switch, InPort, DstMac, DstIp, SrcMac, SrcIp, Arptype),
Arptype == ARP_REQUEST, DstMac == BROADCAST.

rc2 arpReqCtl(@Controller, SrcIp, SrcMac, DstIp, DstMac) :-
packetIn(@Controller, Switch, InPort, DstMac, DstIp, SrcMac, SrcIp, Arptype),
ofconnCtl(@Controller, Switch), Arptype == ARP_REQUEST.

rc3 arpMapping(@Controller, SrcIp, SrcMac) :-
arpReqCtl(@Controller, SrcIp, SrcMac, DstIp, DstMac).

rc4 arpReplyCtl(@Controller, DstIp, Mac, SrcIp, SrcMac) :-
arpReqCtl(@Controller, SrcIp, SrcMac, DstIp, DstMac),
arpMapping(@Controller, DstIp, Mac).

rc5 packetOut(@Switch, Controller, Port, DstMac, DstIp, SrcMac, SrcIp, Arptype) :-
arpReplyCtl(@Controller, SrcIp, SrcMac, DstIp, DstMac),
ofconnCtl(@Controller, Switch),
hostPos(@Controller, DstIp, Switch, Port), Arptype := ARP_REPLY.

/*Switch program*/
rs1 packetIn(@Controller, Switch, InPort, DstMac, DstIp, SrcMac, SrcIp, Arptype) :-

ofconnSwc(@Switch, Controller),
packet(@Switch, Host, DstMac, DstIp, SrcMac, SrcIp, Arptype),
linkSwc(@Switch, Host, InPort),
flowEntry(@Switch, Arptype, Prio, Actions),
Prio == ARP_PRIO, Actions == CONTROLLER, DstMac == BROADCAST.

rs2 packet(@Host, Switch, DstMac, DstIp, SrcMac, SrcIp, Arptype) :-
packetOut(@Switch, Controller, OutPort, DstMac, DstIp, SrcMac, SrcIp, Arptype),
linkSwc(@Switch, Host, OutPort), Arptype == ARP_REPLY.

Figure 43: NDlog implementation of progARP

103

Predicate Description
packetp@Switch,Host,DstMac,DstIp,
SrcMac,SrcIp,Arptypeq

Switch has received an ARP mes-
sage of Arptype (Request/Reply)
from Host. The message is from
(SrcMac,SrcIp) to (DstMac,DstIp).

packetInp@Controller ,Switch, InPort,
DstMac,DstIp,SrcMac,SrcIp,Arptype)

Initializes the packet above.

linkHstp@Host,Switch,Portq Host is connected to Switch via Port
linkSwcp@Switch,Host, InPortq Switch is connected to Host via

InPort
arpRequestp@Host,SrcIp,SrcMac,
DstIp,DstMacq

An ARP request message at Host of
(SrcMac,SrcIp), querying the MAC
address of DstIp.

hostPosp@Controller ,SrcIp,Switch, InPortq The controller registers the informa-
tion that the host with Source IP Sr-
cIp is connected the port InPort of
Switch.

ofconnCtlp@Controller ,Switchq Controller has a connection to
Switch

arpMappingp@Controller ,SrcIp,SrcMacq Controller remembers that the host
of IP address SrcIp has the MAC ad-
dress SrcMac.

arpReqCtlp@Controller ,SrcIp,SrcMac,
DstIp,DstMacq

An ARP request message sent
from (SrcMac,SrcIp) to Controller ,
querying the MAC address of DstIp.

arpReplyCtlp@Controller ,DstIp,DstMac,
SrcIp,SrcMacq

An ARP reply message answering
SrcMac of SrcIp to the host with
IP address DstIp and MAC address
DstMac,

packetOutp@Switch,Controller ,Port,
DstMac,DstIp,SrcMac,SrcIp,Arptypeq

An OpenFlow message sent from
Controller to Switch, to send an
ARP packet of type Arptype from
SrcIp,SrcMac to DstIp,DstMac

flowEntryp@Switch,Arptype,Prio,Actionsq A flow entry of priority Prio at
Switch that applies Actions to pack-
ets of type Arptype.

Table 9: Relations for progARP

104

ϕLB
net1 initPacketpv1, v2, v3q Ą v1 ‰ v2 ^ v2 ‰ v3 ^ v1 ‰ v3

ϕLB
net2 designatedpv4, v5q Ą v4 ‰ v5

ϕLB
net3 designatedpv9, v10q ^ designatedpv11, v12q ^ v9 “ v11 Ą v10 “ v12

ϕLB
net4 serverMappingpv6, v7, v8q Ą v6 ‰ v7 ^ v7 ‰ v8 ^ v6 ‰ v8

ϕLB
net5 serverMappingpv13, v14, v15q

^ serverMappingpv16, v17, v18q
^ v13 “ v16 ^ v14 “ v17 Ą
v15 “ v18

ϕLB
net6 serverMappingpv13, v14, v15q

^ serverMappingpv16, v17, v18q
^ v13 “ v16 ^ v15 “ v18 Ą
v14 “ v17

Figure 44: Network constraints for ARP

Prop Property description Formal specification Result

ϕARP1

If any controller sends an
ARP response for IP ad-
dress IPA, then some end
host had sent a broadcast
ARP request message for
IPA.

@Ctl, IPA,MacA,DstIP,DstMac,
arpReplyCtlpCtl, IPA,MacA,

DstIP,DstMacq Ą
DQmac,
arpRequestpHost,DstIp,DstMac,
IPA,Qmacq

^ Qmac “ 255

true

ϕARP2

If any controller has a
map between IP address
IPA and MAC address
MacA, then host A has
sent a broadcast ARP re-
quest.

@Ctl, IPA,MacA,
arpMappingpCtl, IPA,MacAq Ą
DHost,SrcIP,SrcMac,
DstIP,DstMac,

arpReplypHost, IPA,MacA,
DstIp,DstMacq
^ DstMac “ 255

true

Table 10: Results of checking safety properties of progARP on our tool

105

CHAPTER 5

Runtime Analysis with Compressed Provenance

The previous two chapters mainly focus on using formal methods to verify properties of

distributed systems. In reality, formal verification cannot guarantee that a system would run

without failure. One reason is that only the verified properties are expected to hold during

execution, and due to the complexity of applying formal methods to system verification,

such properties are only a fragment of the desirable property space. Another reason is

attributed to the runtime failure – e.g., hardware errors and power outage – that could

not be anticipated during verification stage. The above discussion motivates the need for

supporting runtime diagnostics in distributed systems, by which the network administrator

could identify the root cause of any failure that happens during system execution.

In this part of the dissertation, STRANDS provides runtime analysis of distributed systems

by introducing storage-optimized network provenance, which allows the user to issue queries

over compressed network meta-data about the history execution of a distributed system.

In recent years, network provenance has been successfully applied to various network set-

tings, resulting in proposals for distributed provenance [95], secure network provenance [92],

distributed time-aware provenance [94], negative provenance [85], differential provenance [16].

These proposals demonstrate that database-style declarative queries can be used for main-

taining and querying distributed provenance at scale. Moreover, they are useful for a wide

range of forensic analysis for determining root causes of misconfigurations, errors, attacks,

and have even been shown to allow automated repair of network configurations [84].

One of the main drawbacks of the existing techniques is their potentially significant storage

overhead, when network provenance is incrementally maintained as network events occur

continuously. This is particularly challenging for the data plane of networks that deals with

frequent and high-volume incoming data packets. When there are streams of incoming

106

packet events, the provenance information can become prohibitively large. While there is

prior work on the storage efficiency of provenance maintenance in the literature [15][46][94],

there is no solution that achieves significant storage reduction in a distributed scenario with

both low network overhead and low query latency. Our contributions are:

System Model. We propose a new network programming model, which specifies dis-

tributed event-based linear programs (DELPs), a restricted variant of NDLog programs.

Each DELP is composed of a set of rules triggered by events, and executes until a fixpoint

is reached. Unlike traditional event-condition-action rules, a DELP has the option of desig-

nating slow changing tuples, which do not change while a distributed fixpoint computation

is happening, but are still amenable to update at intervals. An example of a slow changing

tuple could be a routing entry in a router. We show, through two example applications

(packet forwarding and DNS resolution), that this model is general enough to cover a wide

range of network applications.

Distributed Provenance Compression. Based on the DELP model, we propose two

techniques to store provenance information efficiently. Our second technique combines mul-

tiple provenance trees together, based on a notion of equivalence classes. In each equivalence

class, provenance trees are identical except for a few pre-defined nodes. We compress these

equivalent trees by maintaining only one concrete copy for the shared part, along with the

delta information for each individual provenance tree. We also propose to efficiently iden-

tify equivalence between provenance trees by simply inspecting the values of input events’

attributes, thus reducing the computation overhead in a distributed environment.

Implementation and Evaluation. We implement a prototype of our distributed com-

pression scheme based on the RapidNet declarative networking engine [59]. We enhance

RapidNet to include a rule rewrite engine that maintains provenance at runtime. Provenance

queries are implemented as distributed recursive queries over the maintained provenance

information. We deploy and evaluate our prototype using two popular network applications

107

r1 packetp@N,S,D,DT q :́ packetp@L, S,D,DT q,
routep@L,D,Nq.

r2 recvp@L, S,D,DT q :́ packetp@L, S,D,DT q, D ““ L.

Figure 45: An NDlog program for packet forwarding

n1 n2 n3

route

L D N

@n1 n3 n2

route

L D N

@n2 n3 n3

Figure 46: An example deployment of packet forwarding. Node n1 and node n2 has a local
route table indicating routes towards node n3.

– i.e., packet forwarding and DNS resolution – and the performance results show that the

compression techniques achieve comparably low storage demand as well as lower query la-

tency compared to alternative solutions, with only negligible network overhead added to

each monitored network application at runtime.

We use an example query of NDlog (Figure 45) and its deployment in a topology of three

nodes (Figure 46) to help illustrate our design. In the example program of Figure 45, r1

forwards a local packet (packet) to neighbor N by looking up the packet’s destination D in

the local routing table (route). r2 receives a packet and stores it locally in recv table, if the

packet is destined to the local node (D ““ L). In Figure 46, Nodes n1 and n2 both have

a route table, storing the next hop – i.e., n2 for n1 , and n3 for n2 – to reach n3 .

5.1. Background

We first introduce the concept of distributed network provenance, and shows how it is

maintained in a typical Internet-scale network provenance engine ExSPAN [95].

108

5.1.1. Distributed Network Provenance

Data provenance [40] can be used to explain why and how a given tuple is derived. Based on

data provenance, prior work [96] also proposes network provenance, which faithfully records

the execution of (possibly erroneous) applications in a (possibly misconfigured) distributed

system. This allows the network administrators to inspect the derivation history of system

states. For example, suppose there is a direct link between n1 and n3 in Figure 46. If

the user prefers the routing with the shortest paths, the routing entry of n1 in Figure 46

would have been erroneous – a correct entry should be routep@n1, n3, n3q. The provenance

engine, agnostic of this error, would record the packet traversal on the path n1 Ñ n2 Ñ n3.

The user can later use this recorded provenance as explanation on why the packet took a

particular route, eventually leading to further investigation into the route table at n1.

Network provenance is typically represented as a directed tree rooted at the queried tuple.

Figure 47 shows the provenance tree of a tuple recvp@n3, n1, n3, “data”q. This provenance

tree records the traversal of packetp@n1, n1, n3, “data”q from node n1 to n3 in Figure 46.

There are two types of nodes in a typical provenance tree: the rule nodes and the tuple nodes.

The rule nodes (i.e., the oval nodes in Figure 47) stand for the rules that are triggered in

the program execution, while the tuple nodes (i.e., the square nodes in Figure 47) represent

tuples that trigger/are derived by the rule execution. Note that the root of a provenance

tree is always a tuple node that represents the queried tuple.

To maintain the provenance, traditional database work [46] often stores data provenance

along with the target tuple for efficient provenance querying. Such centralized provenance

maintenance turns out to be very costly for network provenance – which is typically con-

structed in a distributed fashion – in terms of the extra bandwidth needed to ship the

provenance information.

ExSPAN [96], a representative distributed provenance engine, maintains the provenance

information in a distributed relational database. There are two (distributed) tables in the

109

prov
Loc VID RID RLoc
n3 vid6 rid3 n3

(sha1(recvp@n3, n1, n3, “data”q))
n3 vid5 rid2 n2

(sha1(packetp@n3, n1, n3, “data”q))
n2 vid4 rid1 n1

(sha1(packetp@n2, n1, n3, “data”q))
n2 vid3 NULL NULL

(sha1(routep@n2, n3, n3q))
n1 vid2 NULL NULL

(sha1(packetp@n1, n1, n3, “data”q))
n1 vid1 NULL NULL

(sha1(routep@n1, n3, n2q))
ruleExec

RLoc RID R VIDS
n3 rid3(sha1(r2+n3+vid5)) r2 (vid5)
n2 rid2(sha1(r1+n2+vid3+vid4)) r1 (vid3,vid4)
n1 rid1(sha1(r1+n1+vid1+vid2)) r1 (vid1,vid2)

Table 11: Relational tables (ruleExec and prov) maintaining the provenance tree in Figure 47.

database: a prov table and a ruleExec table. The prov table records the rule triggering of a

derived tuple, while the ruleExec table maintains the body tuples triggering a specific rule.

Table 11 shows an example distributed database storing the provenance tree in Figure 47.

The Loc attribute in the prov table and the RLoc attribute in the ruleExec table indicate

the location of each tuple.

ExSPAN uses a recursive query to retrieve the provenance tree of a queried tuple. For exam-

ple, to query the provenance tree of recvp@n3, n1, n3, “data”q (Figure 47), ExSPAN first com-

putes the hash value vid6 of the tuple, and uses vid6 to find the tuple provpn3, vid6, rid3, n3q

in the prov table. ExSPAN further uses rid3 and n3 to locate ruleExecpn3, rid3, r2, pvid5qq

in the ruleExec table, which represents the provenance node of the rule execution (i.e., r2)

that derives vid6. To further query the body tuples that triggered r2, the querier would

then look up pvid5q in the prov table. This recursive querying continues until it reaches the

base tuples (e.g., routep@n1, n3, n2q).

We adopt the same storage model as ExSPAN. However, our provenance compression scheme

applies generally to any distributed provenance model.

110

packet(@n1,n1,n3, data

packet(@n2,n1,n3, data

r1@n1

route(@n1,n3,n2)

r1@n2

route(@n2,n3,n3)

packet(@n3,n1,n3, data

r2@n3

recv(@n3,n1,n3, data

Figure 47: A (distributed) provenance tree for execution of packetp@n1, n1, n3, “data”q,
which traversed from node n1 to node n3 in Figure 46.

5.1.2. Motivation for Effective Provenance Compression

A key problem not addressed in prior work on network provenance [95][94] is to reduce

storage effectively while retaining efficiency of the querying process. Provenance information

in a typical network can become very large, especially for distributed applications (e.g.,

network protocols) where event tuples trigger rules in a streaming fashion. For example,

in Figure 46, if n1 initiates a large volume of traffic towards n3 , each packet in the traffic

would generate a provenance tree similar to the one in Figure 47. Given that today’s

routers forward over millions of packets per second, this would incur prohibitively high

storage overhead for the maintenance of distributed provenance on each intermediate node.

On the other hand, querying efficiency of provenance is important as well. Failure in a

company’s cloud network, for example, could cost millions of dollars and quick provenance

retrieval is essential to root-cause analysis of network anomaly. Therefore, though there

are existing solutions that could achieve significant low storage overhead, such as general

content-level compression (e.g., gzip) or replay-based reactive provenance maintenance [94],

new approaches need to be developed to allow for more efficient querying process.

We observe however that the provenance of different packets share significant similarities

111

in their structures, presenting opportunities for provenance compression across different

provenance trees. For example, in Figure 46, whenever a new packet is sent from n1 to n3,

an entire provenance tree is created and maintained. However, it is not hard to observe that

all the packets traversing through n1 and n2 take the same route – that is, they join with

the same local route tuples. Therefore, storage of the provenance trees generated by these

packets could be significantly reduced if we manage to remove the observed redundancy.

5.1.3. Challenges and Requirements

The key challenge of provenance compression in a distributed system is to achieve high

storage saving while incurring low network overhead. More specifically, our compression

strategy aims to achieve the following three goals:

• Efficient querying of provenance. A user should be able to query provenance

information efficiently regardless of how provenance is stored. We hence avoid com-

pression techniques that focus on content-level compression (e.g. gzip) – as such

techniques would require the user to decompress the whole provenance information

each time, even if the user is only interested in the provenance of one event – and opt

for conservative compression that preserves the structure of the provenance trees.

• Compression should be effective. Our compression approach should ensure that

significant reduction in provenance storage overhead.

• Compression should have low network overhead. Unlike centralized environ-

ment, a distributed system has limited network resources. Therefore, the compression

technique is expected to have low impact on normal network operations – e.g., incur

low bandwidth overhead.

5.2. Model

Following our background, we next introduce our system model, which includes modeling

of distributed systems, network applications, and provenance information.

112

A distributed system DS is modeled as an undirected graph G “ pV , Eq. Each node Ni in

V represents an entity in DS. Two nodes Ni and Nj can communicate with each other if

and only if there is an edge (Ni, Nj) in E . In DS, each node Ni maintains a local state in

the form of a relational database DBi. Tables in DBi can be divided into base tables and

derived tables. Tuples in base tables are manually updated, while tuples in derived tables

are derived by network applications. Figure 46 is an example distributed system with three

nodes.

5.2.1. Network Applications

Each node in DS runs a number of network applications, which are specified in NDlog with

syntactic restriction. The syntactic restriction enables efficient provenance compression

(Section 5.4), while still being expressive enough to model most network applications. In

particular, we have:

Definition 1. An NDlog program Prog=tr1, r2, ..., rnu is a distributed event-driven linear

program (DELP), if Prog satisfies the following three conditions:

• Each rule is event-driven. Each rule ri is in the form: rheads : ´revents, rconditionss,

where revents is a body relation designated by the programmer, and rconditionss are

all non-event body atoms.

• Consecutive rules are dependent. For each rule pair (ri, ri`1) in Prog, the head

relation of ri is identical to the event relation in ri`1.

• Head relations only appear as the event relations in rule bodies. For each head relation

hd in any rule ri, there does not exist a rule rj, such that hd is a non-event relation

in rj.

In a typical network application, non-event relations often represent network states, which

change slowly compared to the fast rate of incoming events. For example, in packet forward-

ing, the route relation is either updated manually or through a network routing protocol.

In either case, it changes slowly compared to the large volume of incoming packets. We

113

call such non-event relations in a DELP as slow-changing relations, and assume they do not

change during the fixpoint computation. This assumption is realistic and can be enforced

easily in the networks where configuration is updated at runtime and packets see only ei-

ther the old or new configuration version across routers, as shown in prior work [71] in the

networking community.

A DELP tr1, r2, ..., rnu can be deployed in a distributed fashion over a network, and its

execution follows the pipelined semi-näıve evaluation strategy introduced in prior work [54]

– whenever a new event tuple is injected into a node Ni, it triggers r1 by joining with the

slow-changing tuples at Ni. The generated head tuple hd is then sent to a node Nj as

identified by the location specifier of hd – triggering r2 at Nj . This process continues until

rn is executed.

DELP can model a large number of network applications, due to their event-driven nature,

such as packet forwarding (Figure 45), Domain Name System (DNS) resolution [58], Dy-

namic Host Configuration Protocol (DHCP) [28] and Address Resolution Protocol (ARP) [68].

5.2.2. Provenance of Interest

It is often the case that network administrators use a subset of network states more often

than others as their starting point for debugging. In the packet forwarding example, an

administrator is more likely to query the provenance of a recv tuple rather than a packet

tuple upon packet misrouting, because the nodes that generate recv tuples are usually the

first places where an administrator observes abnormality. Therefore, we allow a user to

specify relations of interest – i.e., relations whose provenance information interests a user

the most in a network application – and our runtime system maintains concrete provenance

information only for those tuples of the relations of interest. However, the provenance of

other tuples – i.e., those of the relations of less interest – is still accessible. We can adopt,

for example, the reactive maintenance strategy proposed in DTaP [94], by only maintaining

non-deterministic input tuples, and replaying the whole system execution to re-construct

114

packet(@n1,n1,n3, data

r1@n1

route(@n1,n3,n2)

r1@n2

route(@n2,n3,n3)

r2@n3

recv(@n3,n1,n3, data

Figure 48: An optimized provenance tree for the tree in Figure 47.

the provenance information of the tuples of less interest during querying.

As with prior work [96], we represent the provenance information of the tuples of interest

as provenance trees. The only difference is that, given the syntactic restriction of a DELP,

our system treats slow-changing tuples as base tuples during provenance querying – i.e., the

provenance tree of a slow-changing tuple, e.g., a route tuple, is not automatically presented,

even if the tuple could be derived from another network application, e.g., a routing protocol.

To obtain the provenance tree of a route tuple during provenance querying, a user could

specify route as a relation of interest in the application that derives it, and explicitly query

the provenance tree of the route tuple in a separate process.

5.3. Basic Storage Optimization

Based on the model introduced in the previous section, we propose our basic storage op-

timization for provenance trees, which lays the foundation for the compression scheme in

Section 5.4. Simply put, for each provenance tree, we remove its provenance nodes repre-

senting the intermediate event tuples. Figure 48 shows an optimized provenance tree tr1

of the tree in Figure 47. The (distributed) relational database maintaining tr1 is shown in

Table 12, where vid values and rid values are identical to those in Table 11.

Compared to Table 11, Table 12 differs at two parts:

• The prov table only maintains the provenance of the queried tuple, i.e., the recv tuple.

Other entries in the prov table are omitted because they represent either the removed

115

prov
Loc VID RID RLoc
n3 vid6 rid3 n3

ruleExec
RLoc RID R VIDS NLoc NRID

n3 rid3 r2 NULL n2 rid2
n2 rid2 r1 (vid4) n1 rid1
n1 rid1 r1 (vid1,vid2) NULL NULL

Table 12: Optimized ruleExec and prov tables for the provenance tree in Figure 48.

intermediate tuples or the base tuples.

• Two extra columns NLoc and NRID are added to the ruleExec table. These two

attributes help recursive queries find the child node for each provenance node.

The optimization of removing the intermediate nodes saves a fair amount of storage space,

especially when the input events arrive at a high rate and generate a large number of

intermediate tuples, as is common in typical networking scenarios. We use the querying

of recvp@n3, n1, n3, “data”q’s provenance in Table 12 to illustrate the two-step provenance

querying process for optimized provenance trees:

Step 1: Construct the optimized provenance tree. The query first fetches the prove-

nance tree in the optimized form through recursive querying over Table 12. Starting from

the prov entry corresponding to recvp@n3, n1, n3, “data”q, we fetch the provenance node

for the last rule execution rid3 in the ruleExec table, then follow the values in NLoc and

NRID to recursively fetch all the ruleExec tuples (i.e., rid3, rid2 and rid1) until no further

provenance nodes can be fetched – i,e., both NLoc and NRID are NULL.

Step 2: Compute the intermediate provenance nodes. At the end of Step 1, we

obtain the provenance tree tr1 in Figure 48. To recover the intermediate provenance nodes,

we start from the leaf nodes, i.e., packetp@n1, n1, n3, “data”q and routep@n1, n3, n2q, and

re-execute the rule r1 to derive packetp@n2, n1, n3, “data”q. This process is repeated in a

bottom-up fashion until the root is reached, resulting in the provenance tree in Figure 47 .

116

In summary, the basic optimization still allows the user to query the complete provenance

trees, but incurs extra computational overhead during provenance querying to recover the

intermediate nodes. The extra query latency is negligible, as is shown in Section 5.6.1.

5.4. Equivalence-based Compression

The storage optimization described in Section 5.3 focuses on reducing the storage overhead

within a single provenance tree. Building upon this optimization, we further explore remov-

ing redundancy across provenance trees. We propose grouping provenance trees of DELP

execution into equivalence classes, and only maintaining one copy of the shared sub-tree

within each equivalence class. Our definition of the equivalence relation allows equivalent

provenance trees to be quickly identified through inspection of equivalence keys – a subset

of attributes of input event tuples – and compressed efficiently at runtime. The equivalence

keys can be obtained through static analysis of a DELP.

5.4.1. Equivalence Relation

We first introduce the equivalence relation for provenance trees. We say that two provenance

trees tr and tr1 are equivalent, written (tr „ tr1) if (1) they are structurally identical – i.e.,

they share the identical sequence of rules – and (2) the slow-changing tuples used in each

rule are identical as well. In other words, two equivalent trees tr and tr1 only differ at two

nodes: (1) the root node that represents the output tuple and (2) the input event tuple.

More formally, We define tree equivalence using the following notations: an instance of the

input event relation e is denoted ep@ι,~cq, or ev in shorthand; an instance of a slow-changing

relation b is denoted as bp@ι,~cq or B (thus we write B1:: ¨ ¨ ¨ ::Bn to denote the slow-changing

tuples used to execute rule rID); and instances of fast-changing relations are denoted by P ,

pp@ι,~cq, Q, or qp@ι,~cq. A provenance tree tr is inductively defined as follows:

Provenance tree tr ::“ xrID, P, ev,B1:: ¨ ¨ ¨ ::Bny

| xrID, P, tr,B1:: ¨ ¨ ¨ ::Bny

117

tr „K tr1 is defined inductively as follows:

ev „K ev1

vxrID, P, ev,B1:: ¨ ¨ ¨ ::Bny „K xrID, P 1, ev1, B1:: ¨ ¨ ¨ ::Bny

tr „K tr1

xrID, P, tr,B1:: ¨ ¨ ¨ ::Bny „K xrID, P 1, tr1, B1:: ¨ ¨ ¨ ::Bny

In our packet forwarding example, the provenance tree generated by a new incoming event

packetp@n1, n1, n3, “url”q (with “url” as its payload) is equivalent to the tree in Figure 48.

For each equivalence class, we only need to maintain one copy for the sub-provenance tree

shared by all the class members, while each individual tree in the equivalence class only

needs to maintain a small amount of delta information – i.e., the root node, the event

leaf node, and a reference to the shared sub-provenance tree. Additionally, this definition

of equivalence enables more efficient equivalence detection than node-by-node comparison

between trees. In fact, we show that equivalence of two provenance trees can be determined

by checking equivalence of the input event tuples in both trees, based on the observation

that the execution of a DELP is uniquely determined by the values of a subset of attributes

in the input event tuple. For example, in the packet forwarding program (Figure 45), if the

values of the attributes (loc, dst) in two input packet tuples are identical, these two tuples

will generate equivalent provenance trees.

We denote the minimal set of attributesK in the input event relation whose values determine

the provenance trees as equivalence keys. Two event tuples ev1 and ev2 of a relation e are

said to be equivalent w.r.t K, written as ev1 „K ev2, if their valuation of K is equal.

Formally:

Definition 2 (Event equivalence). Let K “ te:i1, ¨ ¨ ¨ , e:imu, ept1 ¨ ¨ ¨ tnq „K eps1 ¨ ¨ ¨ snq iff

@j P ti1, ¨ ¨ ¨ , imu, tj “ sj.

118

Here, e:i denotes the ith attribute of the relation e.

Based on the above discussion, our approach to compressing provenance trees, with regard

to a program DQ, consists of the following two main algorithms. (1) an equivalence keys

identification algorithm, which performs static analysis of DQ to compute the equivalence

keys (Section 5.4.2); and (2) an online provenance compression algorithm, which maintains

the shared provenance tree for each equivalence class in a distributed fashion (Section 5.4.3).

Correctness of using event equivalence for determining provenance tree equivalence is shown

in Theorem 8. The proof will be discussed in Section 5.4.2.

Theorem 8 (Correctness of equivalence keys). Given a program DQ of DELP, and two

input event tuples ev1 and ev2, if ev1 „K ev2, where K is the equivalence keys for DQ, then

for any provenance tree tr1 (tr12) generated by ev1 (ev2), there exists a provenance tree tr2

(tr11) generated by ev2 (ev1) s.t. tr1 „ tr2 (tr11 „ tr12).

5.4.2. Equivalence Keys Identification

Given a DELP, we define a static analysis algorithm to identify the equivalence keys of the

input event relation. The algorithm consists of two steps: (1) building an attribute-level

dependency graph reflecting the relationship between valuation of different attributes and

(2) computing equivalence keys based on the constructed dependency graph. Details of each

step are given below.

Build the attribute-level dependency graph. An attribute-level dependency graph

G=(V , E) is an undirected graph. Nodes of G represent attributes in the program. Specif-

ically, the i-th attribute of a relation rel corresponds to a vertex labeled as (rel:i) in G.

Figure 49 shows an example attribute-level dependency graph for the packet forwarding

program in Figure 45. Based on Section 5.4.2, the equivalence keys are (packet:0, packet:2).

Two vertices v1 and v2 are directly connected in G if and only if v1 represents an attribute

attr1 of the event relation in a rule r and v2 represents another attribute attr2 in r , and

119

packet:0

packet:1

packet:2

packet:3

route:0

route:1

route:2

recv:0

recv:1

recv:2

recv:3

Figure 49: The attribute-level dependency graph for the packet forwarding program in
Figure 45.

satisfies any of the following conditions: (1) attr2 is an attribute of the same name as

attr1 in a slow-changing relation (e.g., v1 “ ppacket:1q and v2 “ proute:1q in rule r1 of

Figure 45); (2) attr2 is a head attribute with the same name as attr1 (e.g., v1 “ ppacket:1q

and v2 “ precv:1q in r2 of Figure 45); (3) attr2 and attr1 appear in the same arithmetic atom

(e.g., v1 “ ppacket:0q and v2 “ ppacket:2q in rule r2 of Figure 45); and (4) v1 is on the right

hand side of an assignment asn and attr2 is on the left hand side of asn. (e.g., if rule r2

of Figure 45 were to be redefined as r21 recvp@L, S,N,DT q :́ packetp@L, S,D,DT q, N :“

L` 2., and v1 “ ppacket:0q while v2 “ precv:2qq.

Identify equivalence keys. Given the attribute-level dependency graph G, we identify the

equivalence keys of the input event relation ev using the function GetEquiKeys (Figure 50).

GetEquiKeys takes G and ev as input, and outputs a list of attributes eqid representing

the equivalence keys. In the algorithm, for each node pev:iq in G, GetEquiKeys checks

whether pev:iq is reachable to any attribute in a slow-changing relation. If this is the case,

pev:iq would be identified as a member of the equivalence keys, and appended to eqid.

We always include the attribute indicating the input location of ev (e.g., ppacket:0q) in the

equivalence keys, to ensure no two input event tuples at different locations have the same

equivalence keys. When applied to the packet forwarding program, GetEquiKeys would

identify ppacket:0q and ppacket:2q as equivalence keys.

Now we introduce a few denotations to help prove Theorem 8. We use predicate joinSAttrpp:nq

120

1: function GetEquiKeys(G, ev)
2: eqid Ð {}
3: eqid.append(ev:0)
4: nodes Ð event attribute nodes in G
5: for each ev:i in nodes do
6: for bnode in non-event nodes of G do
7: if ev:i is reachable to bnode then
8: eqid.append(ev:i)
9: return eqid

10: end function

Figure 50: Pseudocode to identify equivalence keys

to denote that a node (p:n) in the dependency graph has an edge to an attribute in a

slow changing relation. We denote each edge connecting two attributes pp:n, q:mq not

in any slow-changing relation as predicate joinFAttrpp:n, q:mq. We further use predicate

joinFAttrpp:n, q:mq to inductively define connectedpe:i, p:nq, denoting a path in the graph

from pe:iq to pp:nq. We then formally define below what it means, given a DELP, for K to

be equivalence keys:

Definition 3. K is equivalence keys for a program DQ of DELP, if @pe:iq P K, either

DQ $ joinSAttrpe:iq or Dp, n s.t. DQ $ connectedpe:i, p:nq and DQ $ joinSAttrpp:nq.

We show the correctness of Theorem 8 by proving Lemma 9, a stronger lemma that gives

us Theorem 8 as corollary. In Lemma 9, we write tr : P to denote that tr is a provenance

tree of the output tuple P , and write prog,DB, ev (tr : P to mean that tr is generated by

executing the program prog over a database DB, triggered by the event tuple ev.

Lemma 9 (Correctness of equivalence keys (Strong)).

If GetEquiKeyspG, evq “ K and ev1 „K ev2

and prog,DB, ev1 (tr1 : ppt1, ..., tnq,

then Dtr2 : pps1, ..., snq s.t. prog,DB, ev2 (tr2 : pps1, ..., snq

and tr1 : ppt1, ..., tnq „ tr2 : pps1, ..., snq

and @i P r1, ns, ti ‰ si implies

D` s.t. prog $ connectedpev:`, p:iq and pev:`q R K.

121

Intuitively, Lemma 9 states that given two equivalent input event tuples ev1 and ev2 w.r.t.

K, and ev1 generates a provenance tree tr1, we can construct a tr2 for ev2 such that

tr1 and tr2 are equivalent – i.e., they share the same structure and slow-changing tuples.

Furthermore, if the two output tuples ppt1, ..., tnq and pps1, ..., snq have different values for a

given attribute, this attribute must connect to an event attribute that is not in equivalence

keys in the dependency graph. This last condition enables an inductive proof of Lemma 9

over the structure of the trees. More details could be found in the technical report [21].

Time complexity. Next, we analyze the time complexity of static analysis. Assume that

a program DQ has m rules. Each rule r has k atoms, including the head relation and all

body atoms. Each atom has at most t attributes. Hence, the attribute-level dependency

graph G has at most n=m ˚ k ˚ t nodes. The construction of G takes O(n2) time, and the

identification of equivalence keys takes O(t ˚ n) time. Normally t is much smaller than n.

Therefore, the total complexity of static analysis is O(n2).

5.4.3. Online Provenance Compression

We next present an online provenance compression scheme that compresses equivalent (dis-

tributed) provenance trees based on the identified equivalence keys. In our compression

scheme, execution of a DELP, triggered by an event tuple ev, is composed of three stages:

• Stage 1: Equivalence keys checking. Extract the value v of ev’s equivalence keys,

and check whether v has ever been seen before. If so, set a Boolean flag existF lag to

True. Otherwise, set existF lag to False. Tag existF lag along with ev throughout

the execution.

• Stage 2: Online provenance maintenance. If existF lag is True, no provenance

information is maintained during the execution. Otherwise, the complete provenance

tree of the execution would be maintained.

• Stage 3: Output tuple provenance maintenance. When the execution finishes,

associate the output tuple to the shared provenance tree to allow for future provenance

122

(n1,n3)
encountered

before?

existFlag := FalseexistFlag := True

Append existFlag to packet tuple

existFlag == False? existFlag == False?

r1@n2 r2@n3 existFlag == False?

Associate Equivalence Key with
the shared provenance tree

Maintain
provenance

nodes
Associate the output tuple with

the shared provenance tree

Yes

Yes

Yes

Stage 1: Equivalence Key Checking Stage 2: Distributed Online Provenance Maintenance Stage 3: Output Tuple Provenance Association

: Execution of packet(@n1,n1,n3, data : Execution of packet(@n1,n1,n3, url

Q={r1@n1,
r1@n2,
r2@n3}

packet(@n1,n1,n3, url

packet(@n1,n1,n3, data

Equivalence Key:
(loc, dst)

Yes No

Maintain
provenance

nodes

Maintain
provenance

nodes

r1@n1

existFlag == False?

Yes

No

Figure 51: An example execution of the packet forwarding program. The program is first
triggered by packetp@n1, n1, n3, “data”q, followed by packetp@n1, n1, n3, “url”q.

querying.

To illustrate this, Figure 51 presents an example consisting of two packets traversing

the network topology (from n1 to n3) in Figure 46. packetp@n1, n1, n3, “data”q is first

inserted for execution (represented by the solid arrows), followed by the execution of

packetp@n1, n1, n3, “url”q (represented by the dashed arrows). The three stages of online

compression are logically separated with vertical dashed lines. Table 13 presents the (dis-

tributed) relational tables (i.e., a ruleExec table and a prov table) that maintain the com-

pressed provenance trees for the aforementioned execution. Next, we introduce each stage

in detail.

Equivalence Keys Checking. Upon receiving an input event ev, our runtime system

first checks whether the value of ev’s equivalence keys have been seen before. To do this,

we use a hash table htequi to store all unique equivalence keys that have arrived. If ev’s

equivalence keys eqid has a value that already exists in htequi, a Boolean flag existF lag will

be created and set to True. This existF lag is supposed to accompany ev throughout the

123

ruleExec
Loc RID RULE VIDS NLoc NRID
n3 rid1(sha1(r2)) r2 NULL n2 rid2
n2 rid2(sha1(r1,vid1)) r1 (vid1(sha1(routep@n2,

n3, n3q)))
n1 rid3

n1 rid3(sha1(r1,vid2)) r1 (vid2(sha1(routep@n1,
n3, n2q)))

NULL NULL

prov
Loc VID RLoc RID EVID
n3 tid1(sha1(recvp@n3, n1,

n3, “data”q))
n3 rid1 evid1(sha1(packetp@n1,

n1, n3, “data”q))
n3 tid2(sha1(recvp@n3, n1,

n3, “url”q))
n3 rid1 evid2(sha1(packetp@n1,

n1, n3, “url”q))

Table 13: a ruleExec table and a prov table for compressed provenance trees produced in
Figure 51

execution, notifying all nodes involved in the execution to avoid maintaining the concrete

provenance tree. Otherwise, existF lag would be set to False, instructing the subsequent

nodes to maintain the provenance tree. For example, in Figure 51, when the first packet

tuple packetp@n1, n1, n3, “data”q arrives, it has values (n1, n3) for its equivalence keys,

which have never been encountered before, so its existF lag is False. But when the second

packet tuple packetp@n1, n1, n3, “url”q arrives, since it shares the same equivalence keys

values with the first packet, the existF lag for it is True.

Online Provenance Maintenance. For each rule r triggered in the execution, we se-

lectively maintain the provenance information based on existF lag’s value. if existF lag is

False, the provenance nodes are maintained as tuples in the ruleExec table locally. Oth-

erwise, no provenance information is maintained at all. For example, in Figure 51, when

packetp@n2, n1, n3, “data”q triggers rule r1 at node n2, the existF lag is False. Therefore,

we insert a tuple ruleExecpn2, rid2, r1, vid1, n1, rid3q into the ruleExec table at node n2

to record the provenance. The semantics of the inserted tuple are the same as introduced

in Section 5.3. In comparison, when packetp@n2, n1, n3, “url”q triggers r2 at node n2, its

existF lag is True. In this case, we simply execute r2 without recording any provenance

information.

124

Output Tuple Provenance Maintenance. For the execution whose existF lag is True,

we need to associate its output tuple to the shared provenance tree maintained by previous

execution. To do this, we maintain a hash table hmap on each node to store the reference

to the shared provenance tree, wherein the key is the hash value of the equivalence keys,

and the value is the node closest to the root in the shared provenance tree. For example,

in Figure 51, the shared provenance tree is stored in hmap as {hashpn1, n3q: (n3, rid1)}.

We then associate each output tuple tp to the shared provenance tree st, by looking

up its equivalence keys’ values in hmap. This association is stored as a tuple in the

prov table. For example, in Figure 51, the first execution generates the output tuple

recvp@n3, n1, n3, “data”q, which is associated to pn3, rid1q. This is reflected by the tu-

ple provpn3, tid1, n3, rid1, evid1q in the prov table (Table 13). evid1 is used to identify the

event tuple peculiar to the execution, which is not included in the shared provenance tree.

Correctness of Online Compression. We prove the correctness of the online compres-

sion algorithm by showing that our compression scheme of provenance trees is lossless –

that is, the distributed provenance nodes maintained in the ruleExec and prov tables contain

the exact same set of provenance trees that would have been derived by semi-näıve evalua-

tion [54] without compression (Theorem 10). To do this, we define the operational semantics

of semi-näıve evaluation of a DELP with a set of transition rules of form: Csn ÑSN C1sn,

where Csn denotes a state in semi-näıve evaluation that records the complete execution

as provenance [20]. We also define a set of transition rules of form: Ccm ÑCM C1cm for

semi-näıve evaluation with our online compression algorithm. Here, Ccm denotes a state in

semi-näıve evaluation with compression. The proof is to show that we can assemble entries

in the ruleExec and prov tables to reconstruct an original provenance tree D. Likewise, given

a provenance tree D, we can also find an identical tree P encoded as entries in the ruleExec

and prov tables. This correspondence is denoted as D „d P and can be defined by induction

over the structure of provenance trees.

Theorem 10 (Correctness of Compression). @n P N and an initial state Cinit, if Cinit Ñ
n
SN

125

Csn, then DCcm s.t. Cinit Ñ
n
CM Ccm and for any provenance tree D P Csn, there exists a

provenance tree P P Ccm s.t. D „d P and for any provenance tree P P Ccm, there exists a

provenance tree D P Csn s.t. D „d P. And the same is true for semi-näıve evaluation when

Ccm is given.

The above theorem states that if we initiate a DELP DQ from an initial state Cinit, and

execute DQ for n steps to reach a state Csn, then we can also execute DQ for n steps

with the online compression scheme, starting from Cinit and ending in Ccm. In the end, the

sets of provenance trees respectively maintained by these two processes are identical. An

implication of Theorem 10 is that compressed provenance trees, like traditional network

provenance, would faithfully record the system execution, even if the execution is erroneous

due to misconfiguration (e.g., wrong routing tables).

To prove Theorem 10, we show Lemma 11 which implies Theorem 10 as corollary. Lemma 11

shows that semi-näıve evaluation with the online compression scheme is bisimilar to the one

that stores provenance trees without compression. This bisimilarity relation shows that

both evaluation strategies have identical semantics.

Lemma 11 (Compression Simulates Semi-näıve Evaluation). @n P N and an initial state

Cinit, if Cinit Ñ
n
SN Csn, then DCcm s.t. Cinit Ñ

n
CM Ccm and Csn RC Ccm, and vice versa.

We define a bisimulation relation RC between Csn and Ccm – i.e., Csn RC Ccm means that

when Csn ÑSN C1sn, there exists a state C1cm s.t. Ccm ÑCM C1cm and C1sn RC C1cm, and

vice versa. Intuitively, RC relates two states of the two evaluation strategies – i.e., semi-

näıve evaluation with and without compression – that execute identical programs to the

point of identical program execution states, and, most importantly, for any provenance tree

P P Ccm, there exists a provenance tree D P Csn s.t. D „d P, and vice versa. Proof details of

Lemma 11, along with the formal definition of the bisimulation relation RC, are presented

in the technical report [21].

Generality of equivalence-based compression. The idea of equivalence-based compres-

126

sion is not just applicable to distributed scenarios, but can be generally used to compress

arbitrary provenance tree sets maintained in a centralized manner as well. We adopt the

definition of the equivalence relation in Section 5.4.1 because it allows us to use equivalence

keys to efficiently identify equivalent provenance trees, thus more suitable for the distributed

environment where networking resources (e.g., bandwidth) are scarce.

5.4.4. Inter-Equivalence Class Compression

The online compression scheme introduced in Section 5.4.3 focuses on intra-equivalence

class compression of provenance trees – i.e., only trees of the same equivalence class are

compressed. In fact, provenance trees of different equivalence classes can be compressed as

well. For example, assume a tuple packetp@n2, n2, n3, “ack”q is inserted into n2 in Figure 51

for execution. The produced provenance tree prov shares the provenance nodes rid1 and

rid2 in the ruleExec table of Table 13. To avoid the storage of such redundant rule execu-

tion nodes, we separate the ruleExec table into two sub-tables: a ruleExecNode table and a

ruleExecLink table (Table 14). The ruleExecNode table maintains the concrete rule execution

nodes, while the ruleExecLink table, maintained for each provenance tree tr individually,

records the parent-child relationship of the rule execution nodes in tr. If two provenance

trees, whether in the same equivalence class or not, share the same rule execution node nd,

only one copy of the concrete nd will be maintained in the ruleExecNode table. Each tree

maintains a reference pointer pointing to nd in their respective ruleExecLink tables.

ruleExecNode
Loc RID RULE VIDS
n3 rid1 r2 NULL
n2 rid2 r1 (vid1)
n1 rid3 r1 (vid2)

ruleExecLink
Loc RID NLoc NRID
n3 rid1 n2 rid2
n2 rid2 n1 rid3
n1 rid3 NULL NULL

Table 14: The ruleExecNode table and the ruleExecLink table replacing the ruleExec table in
Table 13 to allow for compression of the shared rule execution nodes.

127

n1 n4 n3

route

L D N

@n1 n3 n2

@n1 n3 n4

route

L D N

@n4 n3 n3

n2

Figure 52: An updated topology of Figure 46. A new node n4 is deployed to reach n3. The
route table of n1 is updated to forward packets to n4 now.

5.4.5. Updates to Slow-changing Tables

Though we assume that slow-changing tables do not change during a fixpoint computation,

our system is designed to handle these updates at runtime. Figure 52 presents an example

scenario based on Figure 46, where a network administrator decides to use n4, instead of

n2, as the intermediate hop for packets sent from n1 to n3. To redirect the traffic, the

administrator (1) deletes the route entry routep@n1, n3, n2q, and (2) inserts a new route

entry routep@n1, n3, n4q.

Deletion of a tuple from a slow-changing table – e.g., routep@n1, n3, n2q in Figure 52 –

does not affect the stored provenance, as provenance information is monotone – that is, it

represents the execution history which is immutable [94].

However, if a tuple tp is inserted into a slow-changing table – e.g., routep@n1, n4, n3q – the

provenance tree generated by tp could be incorrect or missing. For example, in Figure 52,

after routep@n1, n4, n3q is inserted, the provenance trees for all subsequent packets need to

be recalculated. However, since these packets are not the first in their equivalence classes,

their existF lags are set to true. As a result, the provenance tree for the packet traversal

on the path n1 Ñ n4 Ñ n3 would not be maintained.

To handle such scenarios, we require that, once a new tuple tp is inserted into a node n’s

slow-changing table, n should broadcast a control message sig to all the nodes in the system.

Any node receiving sig would empty the hash table used for equivalence keys checking

128

(Section 5.4.3). Therefore, provenance trees will be maintained again for all equivalence

classes. In Figure 52, after the insertion of routep@n1, n3, n4q, n1 would broadcast a sig to all

the nodes, including itself. When a new packet pkt destined to n3 arrives at n1, the packet

would have its existF lag set as f alse. When this packet traverses the path n1 Ñ n4 Ñ n3,

the nodes on the path are expected to maintain the corresponding provenance nodes. In

all our network applications, the extra network overhead incurred by the broadcast and

the impact on the effectiveness of compression due to reset of the hash table is negligible,

as slow-changing tables are updated infrequently in practice (relative to the rate of event

arrival). We experimentally validated this, as is shown in Section 5.6.1.

5.4.6. Provenance Querying

To query the provenance tree of an output tuple tp, we take the following steps:

• Compute the hash value htp of tp, and find the tuple prvtp in the prov table that has

htp as its VID.

• Initiate a recursive query for the (shared) provenance nodes in the ruleExec table,

starting with the values of (Loc,RID) in prvtp. Also, tag the event ID evid stored

in the attribute EVID along with the query.

• When the query reaches a ruleExec tuple at node n with values (NULL,NULL) for

(NLoc,NRID), the tagged evid is used to retrieve the event tuple materialized at n.

For example, in Table 13, to query the provenance tree of recvp@n3, n1, n3, “data”q, we first

find prov(n3, tid1, n3, rid1, evid1), and use the values (n3, rid1) to initiate the recursive

query in the ruleExec table to fetch the provenance nodes rid1, rid2 and rid3. evid is carried

throughout the query, and is used to retrieve the event packetp@n1, n1, n3, “data”q when the

query stops at ruleExec(n1, rid3, r1, vid2, NULL, NULL). The above steps return to the

initial querying location a collection of entries from the ruleExec and prov tables. We define

a top-level algorithm Query that reconstructs the complete provenance tree D based on

these entries. The pseudocode of Query can be found in Figure 53. Query takes as input

129

the network state Ccm of the online compression scheme, an output tuple P , an event ID

evid, and returns a set of provenance trees, each of which corresponds to one derivation of

P using the input event tuple of ID evid. The example based on Table 13 has only one

derivation for the output tuple, so we return a singleton set.

Correctness of Querying. To show that our query algorithm (Query in Figure 53) is

able to recover the correct derivation tree of a given tuple from our compressed provenance

storage, we state and prove the correctness of the query algorithm (Theorem 12). This

theorem states that given initial network state Cinit that transitions to Ccm in n steps using

the rules for online compression, there exists a network state Csn for semi-näıve evaluation

s.t. for any derivation tree D that is a proof of output tuple P and derived using an input

event tuple ev with ID evid, Query takes as inputs Ccm, P and evid and returns a set M

consisting of all derivation trees (including D) that are proofs of P and that were derived

using ev. Theorem 12 tells us that Query always returns all the derivations in Csn for P

and evid.

Theorem 12 (Correctness of the Query Algorithm).

@n P N, given an initial state Cinit s.t. Cinit Ñ
n
CM Ccm

and there are no more updates to be processed,

then DCsn s.t. Cinit Ñ
n
SN Csn

and @D:P in the output provenance storage of Csn

s.t. #EventOfpDq “ evid,

DM s.t. QuerypCcm, P, evidq “M and D PM

and @D1 PMzD, D1 is a proof of P stored in Csn

and #EventOfpD1q “ evid.

The proof relies on Lemma 10 to determine that there exists a network state Csn for semi-

näıve evaluation s.t. Ccm and Csn are bisimilar (Csn RC Ccm). Given such an Csn, we pick

an arbitrary derivation tree D for tuple P in Csn that was generated by event tuple ev with

event ID evid. Because Csn RC Ccm, there exists a tuple prov for P in a specific prov table

130

1: function Query(Ccm, P , evid)
2: htpÐ #P
3: if x , htp, , , evidy P Ccm then
4: rprov1 ¨ ¨ ¨ provns Ð Get ProvpCcm, htp, evidq
5: MÐ tu

6: for i P r1, ns do
7: xloc, htp, r loci, ridi, evidy Ð provi
8: Pi Ð QrpCcm, pr loci, ridiqq
9: Di Ð Transform To DpPi, evidq

10: MÐMYDi
11: return M
12: else
13: return H
14: end function
15:
16: function Qr(Ccm, ploc, ridq)
17: if loc ““ NULL and rid ““ NULL then
18: return []
19: else
20: ruleExecÐ Get RuleExecpCcm, ploc, ridqq
21: xloc, rid, r, vids,nloc,nridy Ð ruleExec
22: return QrpCcm, pnloc,nridqq :: ruleExec
23: end function

Figure 53: Pseudocode for querying a provenance tree.

in Ccm storing an association to a specific provenance P, and furthermore D „d P. By

the above reasoning and the semantics of Query, the “If” branch of the If-Else statement

on lines 3-13 of Query is taken. On line 4, Get Prov takes as input Ccm, htp (the hash of

P), and evid, then returns every provi in the prov tables of Ccm containing an association

pr loci, ridiq to a provenance tree Pi for P that was derived using ev. By the relation in E5,

each Pi is recorded in Ccm. We use Qr to retrieve Pi. If we can show that Qr can correctly

retrieve Pi, it is straightforward to show that Transform To D recovers D when given Pi

and evid as inputs. Hence, the conclusion holds.

We still need to show that recursive algorithm Qr will return Pi when given Ccm and the

association pr loci, ridiq to provenance Pi. We prove Lemma 13 below. The proof uses a

uniqueness property on elements in the ruleExec table–the first two arguments of ruleExec

131

(i.e. loc and rid) are primary keys that uniquely determine it. Thus, given any ruleExec and

ruleExec1, that agree on the first two arguments loc and rid, then ruleExec “ ruleExec1.

Lemma 13 (Correctness of Qr). Given that Csn RC Ccm and D:P P Csn and ruleExec =

xloc, rid, r, vids, nloc, nridy and P :: ruleExec is stored in the ruleExec tables of the local

states of Ccm and D „d P :: ruleExec, then QrpCcm, pnloc,nridqq “ P :: ruleExec.

We prove Lemma 13 by induction over `, the length of P :: ruleExec.

Base Case A: ` “ 0. By the assumption we have P :: ruleExec “ rs. By the definition

of „d that relates derivation trees to compressed provenance trees, ED P Csn s.t. D „d rs.

Thus the antecedent of the lemma is false.

Base Case B: ` “ 1. By the assumption we have P “ rs and thus P :: ruleExec “

ruleExec. BecauseD:P „d ruleExec, D has only one rule. Thus (nloc, nrid) are null by the

correspondence relation as only rule r was used to derive P . Because (loc, rid) are not null,

the “Else” branch of the If-Else statement on Lines 17-22 of Qr is taken. Therefore on Line

20 of Qr, the algorithm finds ruleExec (where ruleExec “ xloc, rid, r, vids,nloc,nridy) by

the uniqueness property. The query QrpCcm, pnloc,nridqq initiates a query for an empty

rule provenance list, that by Base Case A returns an empty list. By Line 22 of Qr, we have

Qr(Ccm, (loc, rid)) = rs :: ruleExec as desired.

Inductive Case: ` “ k ` 1 ě 2. By assumption, nloc and nrid are not null, thus the

“Else” branch of the If-Else statement on Lines 17-22 of Qr is taken. Therefore on Line

20 of Qr the algorithm finds ruleExec (where ruleExec “ xloc, rid, r, vids,nloc,nridy) by

the uniqueness property. By assumption, there exists P 1 and ruleExec1 s.t. P “ P 1 ::

ruleExec1 and ruleExec1 is not null. By the above and the correspondence D „d P ::

ruleExec1, exists D1 in Csn that is a subderivation of D s.t. D1 „d P and ruleExec1

= xnloc,nrid, r1, vids1,nloc1,nrid1y. Using I.H. we can obtain Qr(Ccm, (nloc, nrid)) =

P 1 :: ruleExec1. By Line 22 of Qr, we have QrpCcm, ploc, ridqq= P 1 :: ruleExec1 :: ruleExec

= P :: ruleExec as desired.

132

5.5. Implementation

We have implemented a prototype based on enhancements to the RapidNet [59] declarative

networking engine – RapidNet compiles NDlog programs to generate efficient distributed

network protocol implementation – First, we provide compiler extensions to add support

for DELP. We further provide a static analysis module that takes as input a DELP, and

generates equivalence keys for event relations.

eqc r1 equiHashp@loc, src, dst, data, eqid, idq :́
packetp@loc, src, dst, dataq,
progIDp@loc, dst, idq,
eqid :“ f sha1ploc` dstq.

eqc r2 hashCountp@loc, src, dst, data, eqid, id, a COUNT x˚yq :́
equiHashp@loc, src, dst, data, eqid, idq,
hashSetp@loc, eqidq.

eqc r3 hashSetp@loc, eqidq :́
hashCountp@loc, src, dst, data, eqid, id, hcountq,
hcount ““ 0.

eqc r4 packetp@loc, src, dst, data, existF lagq :́
hashCountp@loc, src, dst, data, eqid, id, hcountq,
hcount ““ 0,
existF lag :“ false.

eqc r5 packetp@loc, src, dst, data, existF lagq :́
hashCountp@loc, src, dst, data, eqid, id, hcountq,
hcount! “ 0,
existF lag :“ true.

Figure 54: Rewritten program implementing equivalence key checking for packet forwarding
in Figure 45.

At compile time, we further add a program rewrite step that rewrites each DELP into a new

NDlog program progPROV that supports online provenance maintenance and compression

at runtime. Interestingly, because all the provenance tables are maintained and queried as

relational tables, no additional runtime enhancements are required beyond rule writes. For

example, Figure 54 presents the rewritten DELP rules performing equivalence key checking

for the packet forwarding program in Figure 45. In this program, rule eqc r1 computes the

hash value eqid of the equivalence keys attributes loc and dst, and stores eqid in a equiHash

tuple. Rule eqc r2 is an aggregation rule that checks whether eqid exists in the hashSet

133

table. If the aggregation result hcount is 0 , eqc r3 would update hashSet table with the

new eqid, and eqc r4 would generate existF lag with value f alse. Otherwise, if hcount is

not 0 , eqc r5 generates existF lag with value true. We omit the detailed nineteen rules of

progPROV , but present all the relations of progPROV in Table 15.

In progPROV , progPROV is triggered when a tuple initPacketpNode, SrcAdd,DstAdd,Dataq is

inserted. The program first checks whether the hash values of the packet’s equivalence keys

– i.e., (Node,DstAdd) in the packet forwarding example – exist in a hash table equiHashTable.

If the hash value does not exist, progPROV needs to maintain the provenance for the ex-

ecution of the inserted packet. This is done by first joining the initPacket with the local

flowEntry and conn to perform the forwarding. But instead of generating a new packet that

is to be sent to the next hop, progPROV first generates a temporary packet epacketTemp,

which contains the contents of the original initPacket as well as necessary information for

provenance maintenance, such as the triggered rule’s name and used rule bodies. Based on

epacketTemp, the program will generate a ruleExec tuple that records the provenance, and

a provLink tuple that connects the local provenance node to the previous one to facilitate

future querying. Also, a packet will be generated to be sent to the next hop. On the other

hand, if the hash value of the equivalence keys exist, only the new packet will be produced,

and no provenance-related tuples would be generated.

When the packet is forwarded to intermediate nodes in the network, each node would pro-

duce a temporary epacketTemp to help record the provenance information. When the packet

is received at the destination, additional processing is needed. The program would first gen-

erate a temporary tuple erecvPacketTemp, which helps record the provenance information at

the last hop. In addition, the erecvPacketTemp will derive a provHashTable tuple and a provRef

tuple. The provHashTable associates the values of equivalence keys to the last provenance

node of the shared provenance in the equivalence class, while the provRef tuple associates

the received packet to the corresponding equivalence keys’ values and the input initPacket.

With the above two tuples, the user could construct the complete provenance information

134

during querying.

Predicate Description
initPacketp@Node,SrcAdd,
DstAdd,Data,PIDequi,
ProgIDq

Initiate a packet at node Node to be sent from SrcAdd
to DstAdd, with payload Data. The packet also con-
tains the hash value of equivalence key PIDequi, and
the program ID ProgID.

equiHashTablep@Node,
DstAdd,PIDequi)

A hash table at node Node, with the destination ad-
dress DstAdd as key and the hash value of the equiva-
lence keys PIDequi as value.

packetp@Node,SrcAdd,
DstAdd,Data,PIDHashq

A packet transmitted to Node with the source address
SrcAdd, the destination address DstAdd and the pay-
load Data. PIDHash contains the hash values related
to provenance information (e.g., equivalence keys)

flowEntryp@Node,DstAdd,
Nextq

A routing entry at node Node that indicates the next
hop Next towards the destination DstAdd.

connp@Node,Nextq A link connecting node Node and Next
epacketTempp@Node,Next,
SrcAdd,DstAdd,Data,
RID,R,List,Tagq

A temporary packet at Node containing the prove-
nance, including the executed rule’s RID, its name R,
and its bodies List. Tag contains the global provenance
information (e.g., equivalence keys).

packetProvp@Node,SrcAdd,
DstAdd,Data,Tagq

A transmitted packet whose provenance information
needs to be recorded. The meaning of attributes is
the same as that of epacketTemp.

ruleExecp@RLOC ,RID,R,
Listq

A ruleExec records the provenance information of a trig-
gered rule R. The meaning of the attributes is the same
as that of epacketTemp.

provLinkp@RLOC ,RID,
CurCount,Preloc,
PreRID,PreCount,
PIDequiq

A provLink tuple links two consecutive provenance nodes
of RID and PreRID to enable querying. CurCount and
PreCount are program step counters that differentiate
two provenance nodes of the same contents.

recvPacketp@Node,SrcAdd,
DstAdd, Dataq

A received packet at Node, from the source SrcAdd to
the destination DstAdd with payload Data.

provHashTablep@Node,
PIDequi,ProgID,Loc,
RID,Countq

A hash table at node Node that stores the reference to
the last provenance node RID at node Loc, correspond-
ing to the equivalence keys PIDequi.

provRefp@Node,PID,
PIDequi,PIDevq

A hash table at node Node that stores the reference to
the input tuple PIDev corresponding to the equivalence
keys PIDequi.

recvPacketNPp@Node,
SrcAdd,DstAdd, PIDHashq

A received packet whose traversal of the network does
not trigger the provenance maintenance. PIDHash con-
tains the hash values of the equivalence keys and the
input tuple.

Table 15: Relations for maintaining compressed provenance

135

5.5.1. Properties of Provenance Maintenance Programs

We further show that static analysis introduced in Chapter 4 could facilitate runtime analy-

sis by verifying properties of provenance maintenance programs. We verify three properties

that are supposed to hold when provenance is maintained and compressed (Table 16).

Prop Property de-
scription Formal specification Result

ϕPROV 1

When a packet
was sent out,
the provenance
node for the
packet has been
recorded.

@Next,SrcAdd,DstAdd,Data,PIDequi,
PIDev,ProgID,
packetpNext,SrcAdd,DstAdd,Data,
PIDequi,PIDev,ProgIDq
Ą

DNode,RID,CurCount,Preloc,PreRID,
PreCount,

provLinkpNode,RID,CurCount,Preloc,
PreRID,PreCount,PIDequiq

false

ϕPROV 2

When a packet
which is the
first of its equiv-
alence class
was sent out,
the provenance
node for the
packet has been
recorded.

@Next,SrcAdd,DstAdd,Data,NewCount,
RLOC ,RID,PIDequi,PIDev,ProgID,
packetProv’pNext,SrcAdd,DstAdd,Data,
NewCount,RLOC ,RID,PIDequi,PIDev,
ProgIDq
Ą

DCurCount,Preloc,PreRID,PreCount,
provLinkpRLOC ,RID,CurCount,Preloc,
PreRID,PreCount,PIDequiq

^NewCount “ CurCount` 1.

true

ϕPROV 3

The provenance
node of each
received tuple
which is the first
of the equiva-
lence class is
linked to the
shared subtree.

@Node,SrcAdd,DstAdd,Data,
recvPacketpNode,SrcAdd,DstAdd,Dataq,
Ą

DPIDequi,PIDev,PID,ProgID,
Loc,RID,Count,

provHashTablepNode,PIDequi,ProgID,
Loc,RID,Countq
^provRefpNode,PID,PIDequi,PIDevq

true

Table 16: Safety properties of maintenance of compressed provenance and verification results

In Table 16, property ϕPROV 1 intends to show that each transmitted packet has its prove-

nance recorded. The fact that this property is false actually shows that our solution correctly

avoids maintaining concrete provenance for all incoming packets– i.e., only packets that are

the first of their equivalence classes need to have their provenance recorded (ϕPROV 2). Prop-

136

erty ϕPROV 3 shows that the representative provenance tree is correctly associated to each

equivalence class when the first packet of the equivalence class is received. This ensures

that all subsequent provenance trees in the equivalence class could share the maintained

provenance tree.

The proof strategy follows the symbolic execution-based approach introduced in Chapter 4.

We first construct a dependency graph Gprov for progPROV , and use Gprov to generate a

derivation pool DPprov that contains the derivations, along with corresponding constraints,

for all relations in progPROV . A property ϕ is verified only if no derivation could violate ϕ.

5.6. Evaluation

We have implemented a prototype based on enhancement to the RapidNet [59] declara-

tive networking engine. At compile time, we add a program rewrite step that rewrites

each DELP program into a new program that supports online provenance maintenance and

compression at runtime. We evaluate our prototype to understand the effectiveness of the

online compression scheme. In all the experiments, we focus on comparing four techniques

for maintaining distributed provenance. The first is ExSPAN [95], a typical network prove-

nance engine. We maintain uncompressed provenance trees in the same way as ExSPAN.

The second is the distributed provenance maintenance with basic storage optimization (Sec-

tion 5.3). The third is the provenance maintenance using equivalence-based compression

(Section 5.4). We also compared our solution with the reactive provenance maintenance

in DTaP [94] using the packet forwarding application. Reactive maintenance, during sys-

tem execution, stores only the non-deterministic input tuples (e.g., packet and route tuples).

When a user queries the provenance tree of an output tuple, he/she needs to replay the

execution of the stored input tuples on the relevant nodes – i.e., the nodes that forward

the input tuple so as to generate the queried output tuple – and queries the provenance

re-generated during replay.

In the evaluation section, we refer to the above four techniques as ExSPAN, Basic, Advanced

137

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f
N

o
d

e
s

Rate of Growth of Storage (Mbps)

ExSPAN
Basic

Advanced
Reactive

Figure 55: Cumulative growth rate of prove-
nance with 100 pairs of communicating
nodes, at input rate of 100 packets/second.

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

S
to

ra
g

e
 (

G
B

)

Time (seconds)

ExSPAN
Basic

Advanced
Reactive

Figure 56: Provenance storage growth of all
nodes, with input rate of 100 packets/second
for 100 pairs of communicating nodes.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450 500

S
to

ra
g

e
 (

M
B

)

Number of communicating pairs

ExSPAN
Advanced

Basic
Reactive

Figure 57: Provenance storage usage with
2000 input packets evenly distributed among
given number of pairs.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70

B
a
n
d

w
id

th
 (

M
b

p
s)

Time (seconds)

ExSPAN
Basic

Advanced
Reactive

Figure 58: Bandwidth consumption during
packet forwarding, with 500 pairs of nodes,
each transmitting 100 packets.

and Reactive respectively.

Workloads. Our experiments are carried out on two classic network applications: packet

forwarding (Section 5.1) and Domain Name System (DNS) resolution. DNS resolution is an

Internet service which translates human-readable domain names into IP addresses. Both

applications are event-driven, and typically involve large volume of traffic during execution.

The high-volume traffic incurs large storage overhead if we maintain provenance information

for each packet/DNS request, which leaves potential opportunity for compression. The

workloads are also sufficiently different to evaluate the generality of our approach. Packet

forwarding involve larger messages along different paths in a graph, while DNS lookups

involve smaller messages on a tree-like topology.

138

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

%
 o

f
Q

u
e
ri

e
s

Query latency (ms)

ExSPAN
Basic

Advanced
Reactive

Figure 59: Cumulative distribution of prove-
nance querying latency for 100 random
queries with 100 node pairs.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

%
 o

f
N

o
d

e
s

Rate of Growth of Storage(Mbps)

ExSPAN
Basic

Advanced

Figure 60: Cumulative provenance storage
growth rate of nameservers with input re-
quest at a rate of 1000 requests/second.

Testbed. In our experiment setup, we write the packet forwarding and DNS resolution

applications in DELP, and use our enhanced RapidNet [59] engine to compile them into

low-level (i.e., C++) execution codes.

The experiments for measuring storage and bandwidth are run on the ns-3 [64] network

simulator, which is a discrete-event simulator that allows a user to evaluate network ap-

plications on a variety of network topologies. The simulation is run on a 32-core server

with Intel Xeon 2.40 GHz CPUs. The server has 24G RAM, 400G disk space, and runs

Ubuntu 12.04 as the operating system. We run multiple node instances on the same machine

communicating over the ns-3 simulated network.

Performance Metrics. The performance metrics that we use in our experiments are:

(1) the storage overhead, and (2) the network overhead (i.e., bandwidth consumption) for

provenance maintenance, and (3) the query latency when different provenance maintenance

techniques are adopted.

In our experiments, the relational provenance tables are maintained in memory. To measure

the storage occupation, we use the boost library [74] to serialize C++ data structures into

binary data. At the end of each experiment run, we serialize the per-node provenance tables

(i.e., ruleExec table and prov table) into binary files, and measure the size of files to estimate

the storage overhead.

139

5.6.1. Application #1: Packet Forwarding

Our first set of results is based on the packet forwarding program in Figure 45. The topology

we used for packet forwarding is a 100-node transit-stub graph, randomly generated by the

GT-ITM [89] topology generator. In particular, there are four transit nodes – i.e., nodes

through which traffic can only traverse, but not initiated – in the topology, each connecting

to three stub domains, and each stub domain has eight stub nodes – i.e., nodes where

traffic only originates or terminates. Transit-transit links have 50ms latency and 1Gbps

bandwidth; transit-stub links have 10ms latency and 100Mbps bandwidth; stub-stub links

have 2ms latency and 50Mbps bandwidth. The diameter of the topology is 12, and the

average distance for all node pairs is 5.3. Each node in the topology runs one instance of

the packet forwarding program.

In the experiment, we randomly selected a number of node pairs (s, d) – where s is the

source and d is the destination– and sent packets from s to d while the provenance of each

packet is maintained. To allow the packets to be correctly forwarded in the network, we

pre-computed the shortest path p between s and d using a distributed routing protocol

written as a declarative networking program[55]. The routes are stored in the route tables

at each node in p.

Storage of Provenance Trees Figure 55 shows the CDF (Cumulative Distribution

Function) graph of storage growth for all the nodes in the 100-node topology. In the

experiment, we randomly selected 100 pairs of nodes, and continuously sent packets within

each pair at the rate of 100 packets/second. As packets are transmitted, their provenance

information is incrementally created and stored at each node (and optionally compressed

for Basic and Advanced). We calculated the average storage growth rate of each node,

and plotted a CDF graph based on the results. We observe that ExSPAN has the highest

storage growth rate among the three: 20% of the nodes have storage growth greater than 5

Mbps; 4% of nodes (i.e., transit nodes) have storage growth greater than 30 Mbps. This is

140

because a number of node pairs share the same transit node in their paths. As expected,

Basic has less storage growth rate compared to ExSPAN, as it removes intermediate packet

tuples from the provenance tables of each node. Reactive shows significantly lower storage

growth rates, where 57% of the nodes have their growth rates close to 0 Mbps – i.e., most of

the nodes which have no incoming packets stop maintaining provenance information after

the routing tables have been set up – and the rest of the nodes have lower than 1.2 Mbps

storage growth. Advanced significantly outperforms ExSPAN and Basic: all the nodes in

the topology have less than 2 Mbps storage growth rate. The gap between Advanced and

ExSPAN results from the fact that Advanced only maintains one representative provenance

tree for each pair of nodes, while ExSPAN has to maintain provenance trees for all the

traversing packets. However, compared to Reactive, Advanced has higher storage growth

rate. The reason is that, apart from the storage of the incoming packets’ provenance infor-

mation – this information is maintained by both Advanced and Reactive – Advanced also

needs to maintain the provenance of each output tuple for query purpose.

Figure 56 shows the total storage usage with continuous packet insertion. We ran the

experiment for 100 seconds and took a snapshot of the storage every 10 seconds. The figure

shows that ExSPAN has the highest storage overhead. For example, it reaches the storage

of 11.8 GB at 90 seconds, and keeps growing in a linear fashion. Basic has a similar pattern,

with 9.2 GB at 90 seconds. However, Advanced presents lower storage growth, where at

90 seconds it only consumes storage space of 0.92 GB. Reactive, however, has even lower

storage growth with storage occupation of 0.57 GB at 90 seconds. This is about half of

the storage space needed by Advanced. The extra storage of Advanced comes from two

sources: (1) the materialized shared sub-provenance trees, and (2) the materialized output

tuples. Reactive adopts a replay-based approach, thus only maintaining the input tuples,

which, without multicast, are of the same number as output tuples. Advanced tradeoffs

the extra storage with efficiency in provenance querying, as shown in Section 5.6.1. We

further calculate the average growth rate for all three lines. ExSPAN’s storage grows at 131

MB/second, Basic at 109 MB/second, Advanced at 10.3 MB/second, and Reactive at 6.3

141

MB/second. This means that ExSPAN could fill a 1TB disk within 2 hours, Basic within

2.5 hours, whereas Advanced more than one day, and Reactive almost two days.

Figure 57 shows the storage usage when we increase the number of communicating pairs,

but keep the total number of packets the same (i.e., 2000 packets). All the packets are

evenly distributed among all the communicating pairs. We observe that the storage usage

of ExSPAN and Basic remains almost constant: ExSPAN’s total storage usage is around

27 MB and Basic’s total storage usage is around 21 MB. This is because in both cases,

each packet has a provenance tree maintained in the network, irrelevant of its source and

destination. The burst of storage at the beginning of the experiments for ExSPAN and

Basic is due to the fact that sizes of provenance trees also depend on the length of the path

that each packet traverses. In our experiment, the initial node pairs happen to have path

length shorter than the average path length in the topology, thus incurring less storage

overhead. Reactive’s storage usage is completely constant in this experiment and remains

as low as 2.5MB. The provenance information maintained by Reactive is always the 2000

injected packets, thus keeping constant regardless of the increase of node pairs.

For the case of Advanced, its storage usage increases with the number of communicating

pairs. This is because each communicating pair forms an equivalence class, and maintains

one copy of the shared provenance tree in the equivalence class. Therefore, whenever a new

communicating pair is added to the experiment, we need to maintain one more provenance

tree for that pair, which increases the total storage. The storage gap between Advanced

and Reactive increases with more node pairs. However, the gap is bounded, as in the

most extreme case, each pair of nodes sends one packet between each other, creating one

provenance tree for each of the 2000 packets. Despite the storage increase, Advanced still

consumes much less storage space than ExSPAN and Basic.

In summary, we observe that Basic is able to reduce storage growth, and in combination

with the equivalence-based compression (Advanced), the storage reduction is significant

compared to the näıve provenance maintenance strategy – i.e., a 92% reduction over ExS-

142

PAN. However, Reactive could achieve even lower storage consumption against Advanced –

i.e., a further 38% by maintaining only the non-deterministic input tuples. Such reduction

is obtained at the cost of longer query latency, as is shown in Section 5.6.1. Therefore,

both solutions have tradeoff between storage overhead and query latency, and an selection

strategy will be an interesting topic for future exploration (Section 7.1.3).

Network Overhead. Figure 58 presents the bandwidth utilization when we randomly

selected 500 pairs of nodes and each pair communicated 100 packets. As expected, the

bandwidth consumption of Advanced is close to other solutions. This is because the extra

information carried with each packets is merely existF lag and some auxiliary data (e.g.,

hash value of the event tuple), which is negligible compared to the large payload of the

packets. We repeated the experiment for Advanced, but updated a route every 10 seconds,

in order to study the effects of updates to slow-changing tuples. We observe a negligible

bandwidth increase of 0.6%.

Query Latency To evaluate latency of queries, we used an actual distributed implemen-

tation that can account for both network delays and computation time. We ran the packet

forwarding application on a testbed consisting of 25 machines. Each machine is equipped

with eight Intel Xeon 2.67 GHz CPUs, 4G RAM and 500G disk space, running CentOS 6.8

as the operating system.

On each machine, we ran up to four instances of the same packet forwarding application

with provenance enabled. Instead of communicating via the ns-3 network, actual sockets

were used over a physical network. In total, there were 100 nodes, connected together using

the same transit-stub topology we used for simulation.

In our experiment, we executed 100 queries, selected on random nodes, where each query

returned the provenance tree for a recv tuple corresponding to a random source and des-

tination pair, where the destination node is the starting point of the query. The query

is executed in a distributed fashion as described in Section 5.4.6. Based on our physical

143

network topology, each query takes 5.3 hops on average in the network. We repeated the

experiment for Basic, Advanced, Reactive and ExSPAN for 100 queries each.

Figure 59 shows our experimental results in the form of a CDF of query latency. We observe

that both Basic and Advanced have significantly lower latency compared to ExSPAN and

Reactive. For example, the mean/median for ExSPAN is 75ms and 74ms respectively,

and 93ms and 91ms for Reactive, as compared to only 25.5ms and 25ms for Basic. This

is approximately 3X reduction for ExSPAN in latency times, and 4X for Reactive. The

overhead saving of Advanced and Basic is attributed to the fact that the querying algorithm

is designed based on DELP, which allows for more optimization compared to ExSPAN. For

example, a query of Advanced knows which tuples are the slow-changing tuples during the

querying process, thus it could directly return these slow-changing tuples without further

probing their provenance information, while ExSPAN needs to probe one level further to

determine that these slow-changing tuples are treated as base input themselves. Reactive

requires even longer latency, as it involves the replay time of the original network events.

Also, note that in our experiments, we assume the replay of Reactive starts right with the

input packet corresponding to the query – i.e., Reactive makes a checkpoint right before

the packet is inserted – but this may not be the case for all real scenarios. If the checkpoint

is taken earlier, the querying time for Reactive could be even longer.

In the original work of DTaP [94], similar results were shown for query latency. In the

experiments, DTaP compared the query latency of proactive and reactive maintenance re-

spectively. Proactive provenance maintenance stores the provenance information in the form

of “deltas” between adjacent provenance versions. The average query latency for proactive

maintenance is within 0.34 seconds, compared to 37.7 seconds for reactive maintenance.

Our online compression solution achieves both low storage overhead and low query latency,

with the help of static analysis of programs.

144

5.6.2. Application #2: DNS Resolution

DNS resolution [58] is an Internet service that translates the requested domain name, such

as “www.hello.com”, into its corresponding IP address in the Internet. In practice, DNS

resolution is performed by DNS nameservers, which are organized into a tree-like structure,

where each nameserver is responsible for a domain name (e.g., “hello.com” or “.com”). We

used the recursive name resolution protocol in DNS, and implemented the protocol as a

DELP program (Figure 61. During the execution of each DELP DNS program, provenance

support is enabled so that the history DNS requests can be queried.

The program in Figure 61 is composed of four rules. Rule r1 forwards a DNS request of ID

RQID to the root nameserver RT for resolution. The request is generated by the host HST

for the URL URL. Rule r2 is triggered when a nameserver X receives a DNS request for

URL, but has delegated the resolution of sub-domain DM corresponding to URL to another

nameserver SV. Rule r2 then forwards the DNS request to SV for further DNS resolution.

Rule r3 generates a DNS resolution result containing the IP address IPADDR corresponding

to the requested URL, when URL matches an address record on the nameserver X. Finally,

Rule r4 is responsible for returning the DNS result to the requesting host HST.

r1 requestp@RT,URL,HST,RQIDq :́
urlp@HST,URL,RQIDq.
rootServerp@HST,RT q.

r2 requestp@SV,URL,HST,RQIDq :́
requestp@X,URL,HST,RQIDq,
nameServerp@X,DM,SV q.
f isSubDomainpDM,URLq ““ true.

r3 dnsResultp@X,URL, IPADDR,HST,RQIDq :́
requestp@X,URL,HST,RQIDq,
addressRecordp@X,URL, IPADDRq.

r4 replyp@HST,URL, IPADDR,RQIDq :́
dnsResultp@X,URL, IPADDR,HST,RQIDq.

Figure 61: DELP for DNS resolution.

We synthetically generated the hierarchical network of DNS name servers. In total, there

145

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 5 10 15 20 25 30 35

S
to

ra
g

e
(M

B
)

Number of URLs

ExSPAN
Basic

Advanced

Figure 62: Provenance storage growth with
increasing URLs, with 200 requests sent in
total.

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120

B
a
n
d

w
id

th
 (

M
b

p
s)

Time (Seconds)

ExSPAN
Basic

Advanced

Figure 63: Bandwidth consumption for DNS
resolution with 100,000 DNS requests.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100

S
to

ra
g

e
 (

G
B

)

Time (Seconds)

ExSPAN
Basic

Advanced

Figure 64: Provenance storage growth with continuous input requests at 1000 requests/sec.

were 100 name servers, and the maximum tree depth is 27. Our workload consists of clients

issuing requests to 38 distinct URLs. In total, DNS requests were issued at a rate of 1000

requests/second. Our topology resembles real-world DNS deployments. Prior work [44]

has shown that in reality, the requested domain names satisfy Zipfian distribution. In our

experiments, we adopted the same distribution.

Storage of Provenance Trees

Figure 60 shows the provenance storage growth rate for all nameservers in the Domain Name

System over a 100 seconds duration. We measure the storage growth of each nameserver

by first measuring the growth rate of each 10-second interval, and calculating the average

growth rates over all 10 intervals. We observe that ExSPAN has the largest storage growth

146

rate for each node among the three experiments, while Advanced has the lowest storage

growth rate. Note that the reduction of storage growth rate in Figure 60 is not as significant

as that in the packet forwarding experiments (Figure 55). For example, 80% of nameservers

in ExSPAN have storage growth rate less than 476 Kbps. while the rate is 121 Kbps

for Advanced. Advanced is four times better than ExSPAN, compared to 11 times in

packet forwarding. The reason is that, compared to packet forwarding, we rate the total

throughput of incoming events – i.e., packet tuples in packet forwarding and request tuple in

DNS resolution – and this causes the storage growth rate at each node using either ExSPAN

and Basic to drop as well.

Figure 64 shows provenance storage growth for all nameservers. We record storage growth

rates at 10-second intervals. In Figure 64, the storage of ExSPAN and Basic grows much

faster than that of Advanced. Specifically, the growth rate of ExSPAN, Basic and Advanced

are 13.15 Mbps, 11.57 Mbps and 3.81 Mbps respectively, and their storage space at 100

seconds reaches 1.32 GB, 1.16 GB, and 0.38 GB. With the given rates, ExSPAN would fill

up a 1TB disk within 21 hours, Basic within 24 hours, and Advanced up to 3 days.

Figure 62 shows the storage growth when we increased the number of requested URLs. In

this experiment, we fixed the total number of requests at 200, so that when more URLs

were added, there would be fewer duplicate requests. In Figure 62, the storage overhead

for ExSPAN and Basic remains stable at around 2.5 MB and 2.26 MB respectively. This

is because the storage overhead is mostly determined by the number of provenance trees,

which is equal to the number of incoming requests (i.e., 200 in this case). For Advanced,

the storage grows at a rate of 11.6 Kb per URL. This is expected as we need to maintain

one provenance tree for each equivalence class, and the number of equivalence classes grows

in proportion to the number of URLs. Similar to our packet forwarding results, despite the

storage growth, Advanced still requires significantly less storage compared ExSPAN and

Basic. Unless a URL is only requested once (highly unlikely in reality), which represents

the worst case for Advanced, Advanced always performs better than ExSPAN and Basic.

147

Network Overhead

Figure 63 shows the bandwidth usage with elapsed time when 100,000 requests are con-

tinuously sent to the root nameserver. All three experiments finish within 102 seconds.

Throughout the execution, ExSPAN and Basic have similar bandwidth usage at around 4.5

MBps. On the other hand, Advanced’s bandwidth usage is about 6 MBps, which is about

25% higher than the other two techniques. This is because unlike in the packet forwarding

where each packet carries a payload of 500 characters, each DNS request does not have any

extra payload. Therefore, the meta-data tagged with each request (e.g., existF lag) accounts

for a large part of the size of each request, resulting in higher bandwidth overhead.

5.6.3. Summary

In all the experiments, the storage overhead of Advanced is significantly lower than ExSPAN

and Basic. Moreover, the storage gap varies – when a same equivalence class contains more

events, the ExSPAN would incur much higher provenance storage compared to Advanced.

Reactive, however, outperforms Advanced in storage occupation, by maintaining only the

non-deterministic input and sacrificing the query latency. Therefore, tradeoff exists as to

which solution is more desirable.

Regarding the network overhead, when each packet carries large payload, such as the case in

packet forwarding, the extra provenance maintenance information (e.g., existF lag) carried

with each intermediate tuple is negligible. But when the execution incurs light traffic,

like DNS requests, the overhead of extra information accounts for a large portion of the

intermediate tuples, causing extra network overhead. Reactive is supposed to perform the

best in this case, as it incurs no provenance overhead at all during the execution. We

refer interested readers to ExSPAN [95] for comparison of network overhead against the

normal execution without provenance maintenance. The network overhead for light-traffic

execution could be reduced by several optimizations, such as removing the ID of the event

tuple when there is no projection throughout the execution.

148

CHAPTER 6

Related Work

We summarize the related works that analyze distributed systems using static analysis and

dynamic analysis.

6.1. Static Analysis of Distributed Systems

We first introduce important related works that apply static analysis to distributed systems

for verification purpose.

6.1.1. Verification of System Trace Properties.

There are a number of works that focus on developing logic for verifying trace properties of

programs (protocols) that run concurrently with adversaries [27, 35]. The first piece of our

work (Chapter 3) are inspired by their program logic that requires the asserted properties

of a program to hold even when that program runs concurrently with adversarial programs.

6.1.2. Networking Protocol Verification.

There has been a large body of work on verifying the correctness of various network protocol

design and implementations using proof-based and model-checking techniques [11, 39, 30].

Also, several papers have investigated the verification of route authenticity properties on

specific wireless routing protocols for mobile networks [6, 7, 26]. They have showed that

identifying attacks on route authenticity can be reduced to constraint solving, and that the

security analysis of a specific route authenticity that depends on the topologies of network

instances can be reduced to checking these properties on several four-node topologies. In

our own prior work [17], we have verified route authenticity on variants of S-BGP using

a combination of manual proofs and an automated tool, Proverif [12]. The modeling and

analysis in these works are specific to the protocols and the route authenticity properties.

149

Some of the properties that we verify in our case study are similar. We propose a general

framework for leveraging a declarative programming language for verification and empirical

evaluation of routing protocols. The program logic proposed in Chapter 3 can be used to

verify generic safety properties of SANDlog programs.

6.1.3. Control-plane and Data-plane Verification.

In recent years, formal verification has been applied to both the control-plane (e.g., routing

protocols) and data-plane (e.g., packet forwarding) of networks. There has been a cloud

of prior work on network verification focusing on several different aspects. One aspect

is the verification of network configurations, where the proposed solutions detect network

configuration errors either 1) through static analysis of the configuration files [33, 4, 32, 62,

87], or 2) by analyzing snapshots of the data plane—reflecting the aggregate impact of all

configurations—during system execution [48, 47, 56, 90]. These solutions rely heavily on

application-specific network models and property specifications, which limits its adoption

in more general scenarios.

One special case of network verification is SDN verification [9, 13, 50, 3, 42, 69, 78]. For

example, VeriCon [9] defines its own special language for modeling SDN controller and

switches. A Hoare-logic is developed on this language to prove properties of SDN controllers.

The proof obligations are translated to constraints and solved by the SMT solver. NICE is a

testing tool for SDN controllers written in Python [13]. NICE combines symbolic execution

of the controller programs with state-exploration-based model checking.

An alternative approach is to verify network configurations generated by SDN controllers

in realtime, instead of verifying the protocols directly [50, 56]. For instance, Anteater

reduced SDN data plane verification into SAT problems so that SAT solvers can solve

them effectively in practice [56]. NetKAT is a high-level language designed specifically for

programming SDN. Its semantics are based on Kleene algebra. The correctness properties

of networks programming using NetKAT are tightly connected to the semantics of Kleene

150

algebra, for instance, reachability, way points and traffic separation. All of the above tools

are specially designed to analyze SDN controllers or data planes.

6.2. Runtime Analysis of Distributed Systems

Next, we summarize the works that allow for runtime analysis of distributed systems.

6.2.1. System Monitoring

There are a number of research works that monitors the execution of the distributed sys-

tem. The monitoring allows the system developer to understand the key behavior of the

distributed system, and to diagnose the problem in a more effective way. For example,

Gunter et al. [41] proposes to dynamically monitor the distributed system by instrumenting

network devices in a light-weighted manner. Chen et al. [24] records runtime paths that

requests follow in a distributed system to manage failure and evolution of the system. P2

Monitor [77] develops an application logging, monitoring and debugging facility built on

top of P2 system. D3S [52] allows the developers to specify prediate over the distributed

system, and would output a sequence of state changes when failure occurs.

6.2.2. Message Logging

Message logging is a well-studied area for analyzing distributed systems. Aguilera et al. [2]

uses message-level traces to debug performance in distributed systems with black boxes.

Netlogger [80] records the event logs in a distributed system to provide detailed end-to-

end application and system-level monitoring. Pip [72] proposes infrastructure that allows

the user to compare his/her expected behavior of the distributed system with the actual

behavior that is recorded through instrumentation of the system. Liblog [37] records log

execution for C/C++ applications in a distributed system, and deterministically replay the

logs to help debug the system. Google has also proposed Dapper [76], which is a tracing

infrastructure that help debug the distributed system. X-trace [34] designs a tracing frame-

work that provides a comprehensive view of the distributed system. Friday [36] combines

151

the deterministic replay with symbolic debugging. WiDS Checker [53] uses simulation to

replay the execution of the distributed system, and allows the user to specify high-level

properties which are fed to the checker for verification.

6.2.3. Network Provenance

Network provenance is an area which draws the attention of researchers recently. Compared

to message logging, network provenance explicitly captures the causality relationship among

events in the distributed system, providing a more convenient tool for the user to debug

the system.

Network provenance has been proposed and developed by ExSPAN [95] and DTaP [94].

These two proposals apply the concept of data provenance to the networking field to sup-

port network diagnosis and forensics. In Chapter 5, we adopted ExSPAN’s provenance tree

model as a starting point, and developed compression schemes based on the model. Secure

Network Provenance [92] enables network provenance in an adversarial environment, where

misbehaving nodes can be detected even if they lie. Negative provenance [85] extends the

network provenance to explain the missing event in the network. There are a number of

works that have already used network provenance to systematically debug the system. Dif-

ferential provenance [16] debugs the distributed system by identifying the difference between

a faulty provenance tree and a reference provenance tree. Meta Provenance [84] proposes

to debug the software of network devices with the help of provenance. Our compression

scheme is expected to work on all the systems that support network provenance.

6.2.4. Provenance Compression

In database literature, a number of works have considered optimization of provenance stor-

age. However, we differ significantly in our design due to the distributed nature of our

target environment. We briefly list a few representative bodies of work, and explain our

differences.

152

Woodruff et al. [83] reduce storage usage for maintaining fine-grained lineage (i.e., prove-

nance) by computing provenance information dynamically during query time through in-

vertible functions. Their approach makes tradeoff between storage efficiency and accuracy

of provenance. On the other hand, our approach requires no such tradeoff, achieving the

same level of accuracy as queries on uncompressed provenance trees.

Chapman et al. [15] develop a set of factorization algorithms to compress workflow prove-

nance. Their proposal does not consider a distributed setting. For example, node-level

factorization (combining identical nodes) requires additional states to be maintained and

propagated from node to node during provenance maintenance to resolve potential ambi-

guities. Maintaining and propagating these states can lead to significant communication

overhead in a distributed environment. In contrast, our solution uses equivalence keys to

avoid comparing provenance trees on a node-by-node basis, and hence minimizes commu-

nication overhead during provenance maintenance.

Our compression technique implicitly factorizes provenance trees at runtime before removing

redundant factors among trees in the same equivalence class. Olteanu et al. [65][66] propose

factorization of provenance polynomials for conjunctive queries with a new data structure

called factorization tree. Polynomial factorization in [66] can be viewed as a more general

form of the factorization used in the equivalence-based compression proposed in Chapter 5.

If we encode the provenance trees of each packet as polynomials, the general factorization

algorithm in [66], with specialized factorization tree, would produce the same factorization

result in our setting. Our approach is slightly more efficient, as we can skip the factorization

step by directly using equivalence keys at runtime to group provenance trees for compression.

Exploring the more general form of factorization in [66] for provenance of distributed queries

is an interesting avenue of future work.

ProQL [46] proposes to save the storage of single provenance tree by (1) using primary

keys to represent tuples in the provenance, and (2) maintaining one copy for attributes of

the same values in a mapping (rule). These techniques could also be applied alongside our

153

online compression algorithm to further reduce storage. ProQL does not consider storage

sharing across provenance trees. Amsterdamer et al. [5] theoretically defines the concept

of core provenance, which represents derivation shared by multiple equivalent queries. In

our scenario, the shared provenance tree of each equivalence class can be viewed as core

provenance.

Xie et al. [86] propose to compress provenance graphs with a hybrid approach combining

Web graph compression and dictionary encoding. Zhifeng et al. [10] proposes rule-based

provenance compression scheme. Their approaches on a high level compresses provenance

trees to reduce redundant storage. However, these approaches require knowledge of the

entire trees prior to compression, which is not practical, if not impossible, for distributed

provenance.

154

CHAPTER 7

Future Work

In addition to the work that has been done, we propose future work that aims at providing

a more complete framework that allows for unified static analysis and runtime analysis of

declarative distributed systems. The future work is mainly composed of two parts:

• A more complete framework for provenance compression. To make our frame-

work more complete, we intend to add more features into our current framework, along

with more evaluation on additional applications.

• Optimization of static analysis. We plan to optimize static analysis by designing

algorithms that could incrementally maintain derivation instances for evolving NDlog

programs.

7.1. A More Complete Framework of Provenance Compression

Though our provenance compression scheme has already achieved significant storage reduc-

tion for packet forwarding and DNS resolution applications, we try to make the framework

more complete by (1) allowing the user to dynamically specify the equivalence relation of

provenance trees, and (2) performing more evaluation over the prototype we have now. We

introduce these two tasks in more detail below.

7.1.1. Dynamic Definition of Equivalence Relation

When we perform the provenance compression now, the equivalence relation for provenance

trees is pre-defined. This definition, though effective in reducing storage space, could still

incur large storage overhead under certain circumstances. For example, consider a slow-

changing table T (e.g., a routing table). Two provenance trees that use different tuples in

T , but share the rest of the provenance nodes would not be considered equivalent, given our

155

current definition of the equivalence relation. However, if we exclude T from the definition

of the equivalence relation, the above two provenance trees can be viewed as equivalent and

got compressed.

Therefore, we intend to support such dynamic definition of the equivalence relation, so that

users could specify their own equivalence relations that mostly meet their needs. We expect

the new design to further compress provenance trees that differ in a portion of provenance

nodes, rather than only one single provenance node.

The change of design could possibly make provenance maintenance and query more compli-

cated, as it now requires nodes in the distributed system to selectively maintain provenance

information – i.e., these nodes need to compress provenance nodes involved in the definition

of the equivalence relation, but not those not involved. We expect to explore the new design

more carefully in the future.

We also plan to evaluate the storage overhead using the dynamic definition of the equiv-

alence relation, and compare it with the static definition, over a few popular networking

applications, such as packet forwarding.

7.1.2. Provenance Maintenance for SDN Applications

The two applications we are evaluating now – i.e., packet forwarding and DNS resolution

– are relatively simple, in that their specification involves no more than five NDlog rules.

To show the generality of our solution, we plan to apply the compressed provenance to

applications in software-defined networking, such as Ethernet MAC learning or Ethernet

address resolution. A typical SDN-enabled distributed system involves multiple types of

network devices, including a controller, a number of bare-metal switches (e.g., Openflow

switches) and end hosts. Each network device will be modeled in NDlog rules and the

provenance information will be collected and compressed for packets traversing the network,

as well as control-plane messages (e.g., ARP messages).

156

We will not only apply our solution to the selected SDN application, but also redo all the

evaluation for the new application. This includes measurement of the provenance storage

(growth), the bandwidth utilization and the query latency.

7.1.3. A Cost Model for Selection between Alternative Solutions

The experimental results In Section 5.6.1 show that the reactive maintenance strategy of

DTaP [94] could save more storage than our online compression scheme, sacrificing a certain

amount of time during querying. As a result, the user needs to make tradeoff in reality when

selecting either solution. A rigorous cost model could ease the pain of making a decision as

to which strategy to take. The cost model is expected to take into account several factors:

(1) frequency of querying, where the online compression scheme is favored when the query

frequency is high; (2) storage availability, where DTaP is preferred when storage is scarce.

(3) bandwidth availability, where DTaP consumes less bandwidth, and (4) cost of replay,

where the online compression scheme is a winner if replay is costly – e.g., no duplication

system exists.

7.2. Optimization of Static Analysis

We intend to optimize computation of the derivation pool in Chapter 4. Specifically, we

plan to develop a new algorithm that incrementally maintains the derivation pool when new

rules are added to a NDlog program.

7.2.1. Incremental Maintenance of the Derivation Pool

The symbolic execution of NDlog programs in Chapter 4 would generate a derivation pool

which contains all possible derivations of each relation in the program. Since the derivation

pool is large, it is slow and unnecessary to generate the pool from scratch for every program,

especially when one program is an evolved version of another program. For example, in the

application of Ethernet Address Resolution (Section 4.4). the user might want to add a rule

for access control, so that only an authorized machine is allowed to query the MAC address

157

of another one. Though the new program only differs in one rule from the old program,

the derivation pool has to be re-generated all over again with our current solution, which

is inefficient.

We would like to explore the possibility of maintaining the derivation pool incrementally,

when new rules are added into the program. This potentially requires a new algorithm that

takes as input an existing NDlog program prog, the delta rules rs and the derivation pool

of prog, and outputs a new derivation pool corresponding to prog Y rs.

7.2.2. Evaluation of the Incremental Maintenance Algorithm

We intend to prove correctness of the incremental maintenance algorithm and analyze its

time complexity. We would also empirically evaluate the time that is needed for the algo-

rithm to re-compute the derivation pool, and compare the results with the old algorithm

where the derivation pool is re-computed from scratch.

158

CHAPTER 8

Conclusion

In this dissertation, we have shown that STRANDS could not only ensure correctness of

distributed systems, but, in the case of failure, help network administrators debug the

system. We also demonstrate that static analysis and runtime analysis could aid each other

to achieve better performance during system analysis.

We have designed a program logic for verifying secure routing protocols specified in the

declarative language SANDlog. We have integrated verification into a unified framework

for formal analysis and empirical evaluation of secure routing protocols.

To better automate the verification process, we presented a symbolic execution-based ap-

proach to analyze and debug network protocols using declarative networking. By focusing

on a specific class of safety properties, we are able to analyze NDlog programs with few

annotations. Our algorithm reduces property checking to constraint solving that can be

automatically checked by SMT solvers (e.g., Z3). We analyzed formal properties of our

algorithms and implemented a prototype tool on top of RapidNet, a compilation and ex-

ecution framework for NDlog. Using our tool, we analyzed a number of real-world SDN

network protocols. Our tool can unveil problems ranging from software bugs, incomplete

topological constraints, and incorrect property specification. When a given safety property

is violated, our tool can provide meaningful counterexamples to help debug the protocol

specification.

Finally, we enable the users of distributed systems to deploy storage-efficient distributed

provenance, faciliting root cause analysis during system failure. We propose an online

compression scheme that compresses distributed network provenance during the execution

of network applications. Our work is motivated by network settings, where the large volume

of events necessitate compression techniques, and existing centralized approaches do not

159

work. We define an equivalence relation between provenance trees, and come up with a

compile time static analysis phase for determining equivalence keys attributes that can be

used for grouping provenance tress together. At runtime, through a rule rewrite process, our

network implementation maintains and stores only one concrete copy for provenance trees

that are shared by all the members in the equivalence class. Our evaluation results show

that the compression scheme saves storage significantly, incurs little network overhead, and

allows for efficient provenance query.

160

Bibliography

[1] Wireshark. https://www.wireshark.org/.

[2] Marcos Kawazoe Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and
Athicha Muthitacharoen. Performance debugging for distributed systems of black
boxes. In Proceedings of the 19th ACM Symposium on Operating Systems Princi-
ples 2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003, pages 74–89,
2003.

[3] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: Configuration analysis and verification
of federated openflow infrastructures. In SafeConfig, 2010.

[4] Ehab Al-Shaer and Hazem Hamed. Discovery of policy anomalies in distributed fire-
walls. In INFOCOM, 2004.

[5] Yael Amsterdamer, Daniel Deutch, Tova Milo, and Val Tannen. On provenance mini-
mization. ACM Trans. Database Syst., 37(4):30, 2012.

[6] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Modeling and verifying
ad hoc routing protocols. In Proceedings of CSF, 2010.

[7] Mathilde Arnaud, Véronique Cortier, and Stéphanie Delaune. Deciding security for
protocols with recursive tests. In Proceedings of CADE, 2011.

[8] Christel Baier and Joost-Pieter Katoen, editors. Principles of Model Checking. The
MIT press, 2008.

[9] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr Karby-
shev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. Vericon: towards verify-
ing controller programs in software-defined networks. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, page 31, 2014.

[10] Zhifeng Bao, Henning Köhler, Liwei Wang, Xiaofang Zhou, and Shazia Wasim Sadiq.
Efficient provenance storage for relational queries. In 21st ACM International Confer-
ence on Information and Knowledge Management, CIKM’12, Maui, HI, USA, October
29 - November 02, 2012, pages 1352–1361, 2012.

[11] Karthikeyan Bhargavan, Davor Obradovic, and Carl A. Gunter. Formal verification of
standards for distance vector routing protocols. J. ACM, 49(4), 2002.

[12] Bruno Blanchet and Ben Smyth. Proverif 1.86: Automatic cryptographic protocol
verifier, user manual and tutorial. http://www.proverif.ens.fr/manual.pdf.

[13] Marco Canini, Daniele Venzano, Peter Pereśıni, Dejan Kostic, and Jennifer Rexford. A
NICE way to test openflow applications. In Proceedings of the 9th USENIX Symposium

161

on Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA,
April 25-27, 2012, pages 127–140, 2012.

[14] Chin-Liang Chang and Richard C. T. Lee. Symbolic logic and mechanical theorem
proving. Computer science classics. Academic Press, 1973.

[15] Adriane Chapman, H. V. Jagadish, and Prakash Ramanan. Efficient provenance stor-
age. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 993–1006,
2008.

[16] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. The
good, the bad, and the differences: Better network diagnostics with differential prove-
nance. In Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference,
Florianopolis, Brazil, August 22-26, 2016, pages 115–128, 2016.

[17] Chen Chen, Limin Jia, Boon Thau Loo, and Wenchao Zhou. Reduction-based security
analysis of internet routing protocols. In WRiPE, 2012.

[18] Chen Chen, Limin Jia, Hao Xu, Cheng Luo, Wenchao Zhou, and Boon Thau Loo. A
program logic for verifying secure routing protocols. June 2014.

[19] Chen Chen, Limin Jia, Hao Xu, Cheng Luo, Wenchao Zhou, and Boon Thau Loo.
A program logic for verifying secure routing protocols. Technical report, CIS Dept.
University of Pennsylvania, February 2014.

[20] Chen Chen, Limin Jia, Hao Xu, Cheng Luo, Wenchao Zhou, and Boon Thau Loo. A
program logic for verifying secure routing protocols. In International Conference on
Formal Techniques for Distributed Objects, Components, and Systems, pages 117–132.
Springer, 2014.

[21] Chen Chen, Harshal Lehri, Lay Kuan Loh, Anupam Alur, Limin Jia, Boon Thau Loo,
and Wenchao Zhou. Provably correct distributed provenance compression (cmu-cylab-
17-001). Technical report, CyLab, Carnegie Mellon University, Jan. 2017.

[22] Chen Chen, Harshal Tushar Lehri, Lay Kuan Loh, Anupam Alur, Limin Jia, Boon Thau
Loo, and Wenchao Zhou. Distributed provenance compression. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, pages 203–218, 2017.

[23] Chen Chen, Lay Kuan Loh, Limin Jia, Wenchao Zhou, and Boon Thau Loo. Automated
verification of safety properties of declarative networking programs. In Proceedings of
the 17th International Symposium on Principles and Practice of Declarative Program-
ming, Siena, Italy, July 14-16, 2015, pages 79–90, 2015.

[24] Mike Y. Chen, Anthony Accardi, Emre Kiciman, David A. Patterson, Armando Fox,
and Eric A. Brewer. Path-based failure and evolution management. In 1st Symposium

162

on Networked Systems Design and Implementation (NSDI 2004), March 29-31, 2004,
San Francisco, California, USA, Proceedings, pages 309–322, 2004.

[25] CNET. How pakistan knocked youtube offline.

[26] Véronique Cortier, Jan Degrieck, and Stéphanie Delaune. Analysing routing protocols:
four nodes topologies are sufficient. In Proceedings of POST, 2012.

[27] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol Composition
Logic (PCL). Electronic Notes in Theoretical Computer Science, 172:311–358, 2007.

[28] Ralph Droms. Dynamic host configuration protocol. 1997. RFC 2131.

[29] E. N. Elnozahy and Willy Zwaenepoel. On the use and implementation of message log-
ging. In Digest of Papers: FTCS/24, The Twenty-Fourth Annual International Sym-
posium on Fault-Tolerant Computing, Austin, Texas, USA, June 15-17, 1994, pages
298–307, 1994.

[30] Dawson Engler and Madanlal Musuvathi. Model-checking large network protocol im-
plementations. In Proceedings of NSDI, 2004.

[31] Santiago Escobar, Catherine Meadows, and José Meseguer. A rewriting-based inference
system for the NRL protocol analyzer: grammar generation. In Proceedings of FMSE,
2005.

[32] Nick Feamster and Hari Balakrishnan. Detecting bgp configuration faults with static
analysis. In NDSI, 2005.

[33] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,
Ratul Mahajan, and Todd Millstein. A general approach to network configuration
analysis. In NSDI, 2015.

[34] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. X-
trace: A pervasive network tracing framework. In 4th Symposium on Networked Sys-
tems Design and Implementation (NSDI 2007), April 11-13, 2007, Cambridge, Mas-
sachusetts, USA, Proceedings., 2007.

[35] Deepak Garg, Jason Franklin, Dilsun Kaynar, and Anupam Datta. Compositional
system security with interface-confined adversaries. ENTCS, 265:49–71, September
2010.

[36] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Stoica.
Friday: Global comprehension for distributed replay. In 4th Symposium on Networked
Systems Design and Implementation (NSDI 2007), April 11-13, 2007, Cambridge, Mas-
sachusetts, USA, Proceedings., 2007.

[37] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay debugging for
distributed applications (awarded best paper!). In Proceedings of the 2006 USENIX

163

Annual Technical Conference, Boston, MA, USA, May 30 - June 3, 2006, pages 289–
300, 2006.

[38] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles 2003, SOSP
2003, Bolton Landing, NY, USA, October 19-22, 2003, pages 29–43, 2003.

[39] Alwyn Goodloe, Carl A. Gunter, and Mark-Oliver Stehr. Formal prototyping in early
stages of protocol design. In Proceedings of ACM WITS, 2005.

[40] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings. In Pro-
ceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, June 11-13, 2007, Beijing, China, pages 31–40, 2007.

[41] Dan Gunter, Brian Tierney, Keith R. Jackson, Jason Lee, and Martin Stoufer. Dynamic
monitoring of high-performance distributed applications. In 11th IEEE International
Symposium on High Performance Distributed Computing (HPDC-11 2002), 23-26 July
2002, Edinburgh, Scotland, UK, pages 163–170, 2002.

[42] Stephen Gutz, Alec Story, Cole Schlesinger, and Nate Foster. Splendid isolation: A
slice abstraction for software-defined networks. In HotSDN, 2012.

[43] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and Nick
McKeown. I know what your packet did last hop: Using packet histories to troubleshoot
networks. In Proceedings of the 11th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014, pages 71–85,
2014.

[44] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. DNS performance and
the effectiveness of caching. IEEE/ACM Trans. Netw., 10(5):589–603, 2002.

[45] Hans W. Kamp. Tense Logic and the Theory of Linear Order. Phd thesis, Computer
Science Department, University of California at Los Angeles, USA, 1968.

[46] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying data provenance.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 951–962,
2010.

[47] Peyman Kazemian, Michael Chan, Hongyi Zeng, George Varghese, Nick McKeown,
and Scott Whyte. Real time network policy checking using header space analysis.
In Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013, pages 99–111, 2013.

[48] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis:
Static checking for networks. In Proceedings of the 9th USENIX Symposium on Net-

164

worked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April
25-27, 2012, pages 113–126, 2012.

[49] Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure border gateway
protocol (S-BGP). IEEE Journal on Selected Areas in Communications, 18:103–116,
2000.

[50] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and Philip Brighten
Godfrey. Veriflow: Verifying network-wide invariants in real time. In Proceedings of the
10th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2013, Lombard, IL, USA, April 2-5, 2013, pages 15–27, 2013.

[51] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–
394, 1976.

[52] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming
Wu, M. Frans Kaashoek, and Zheng Zhang. D3S: debugging deployed distributed
systems. In 5th USENIX Symposium on Networked Systems Design & Implementation,
NSDI 2008, April 16-18, 2008, San Francisco, CA, USA, Proceedings, pages 423–437,
2008.

[53] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. Wids checker: Combating
bugs in distributed systems. In 4th Symposium on Networked Systems Design and
Implementation (NSDI 2007), April 11-13, 2007, Cambridge, Massachusetts, USA,
Proceedings., 2007.

[54] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Heller-
stein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declar-
ative Networking: Language, Execution and Optimization. In SIGMOD, 2006.

[55] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Heller-
stein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. Declar-
ative networking. In Communications of the ACM, 2009.

[56] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, Brighten Godfrey,
and Samuel Talmadge King. Debugging the data plane with anteater. In Proceedings
of the ACM SIGCOMM 2011 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Toronto, ON, Canada, August 15-19,
2011, pages 290–301, 2011.

[57] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, 2008.

[58] P. V. Mockapetris. Domain names - implementation and specification, November 1987.
RFC 1035.

165

[59] Shivkumar C. Muthukumar, Xiaozhou Li, Changbin Liu, Joseph B. Kopena, Mihai
Oprea, and Boon Thau Loo. Declarative toolkit for rapid network protocol simulation
and experimentation. In SIGCOMM (demo), 2009.

[60] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazieres, Michael Miller, and
Arun Seehra. Verifying and enforcing network paths with ICING. In Proceedings of
CoNEXT, 2011.

[61] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishnamurthi.
Tierless programming and reasoning for software-defined networks. In NSDI, 2014.

[62] Timothy Nelson, Christopher Barratt, Daniel Dougherty, Kathi Fisler, and Shriram
Krishnamurthi. The margrave tool for firewall analysis. In LISA, 2010.

[63] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. Maintaining distributed
logic programs incrementally. In Proceedings of PPDP, 2011.

[64] ns 3 project. Network Simulator 3. http://www.nsnam.org/.

[65] Dan Olteanu and Jakub Závodný. On factorisation of provenance polynomials. In
Proceedings of TaPP, 2011.

[66] Dan Olteanu and Jakub Závodný. Factorised representations of query results: size
bounds and readability. In Proceedings of ICDT, pages 285–298, 2012.

[67] One Hundred Eleventh Congress. 2010 report to congress of the u.s.-china economic
and security review commission, 2010.

[68] David C. Plummer. An ethernet address resolution protocol. 1982. RFC 826.

[69] P Porras, S Shin, V Yegneswaran, M Fong, M Tyson, and G Gu. A security enforcement
kernel for openflow networks. In HotSDN, 2012.

[70] RapidNet: A Declarative Toolkit for Rapid Network Simulation and Experimentation.
http://netdb.cis.upenn.edu/rapidnet/.

[71] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. In Proceedings of ACM SIGCOMM, pages 323–334,
2012.

[72] Patrick Reynolds, Charles Edwin Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A.
Shah, and Amin Vahdat. Pip: Detecting the unexpected in distributed systems. In
3rd Symposium on Networked Systems Design and Implementation (NSDI 2006), May
8-10, 2007, San Jose, California, USA, Proceedings., 2006.

[73] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems (reprint). Commun. ACM, 26(1):96–
99, 1983.

166

[74] Robert Ramey. http://www.boost.org/doc/libs/1 61 0/libs/serialization/doc/index.html.

[75] Secure BGP. http://www.ir.bbn.com/sbgp/.

[76] Benjamin H. Sigelman, Luiz AndrÃľ Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a large-scale
distributed systems tracing infrastructure. Technical report, Google, Inc., 2010.

[77] Atul Singh, Petros Maniatis, Timothy Roscoe, and Peter Druschel. Using queries for
distributed monitoring and forensics. In Proceedings of the 2006 EuroSys Conference,
Leuven, Belgium, April 18-21, 2006, pages 389–402, 2006.

[78] R. W Skowyra, A Lapets, A Bestavros, and A Kfoury. Verifiably-safe software-defined
networks for cps. In HiCoNS, 2013.

[79] The Coq project. The Coq Proof Assistant. https://coq.inria.fr/.

[80] Brian Tierney, William E. Johnston, Brian Crowley, Gary Hoo, Christopher X. Brooks,
and Dan Gunter. The netlogger methodology for high performance distributed systems
performance analysis. In Proceedings of the Seventh IEEE International Symposium
on High Performance Distributed Computing, HPDC ’98, Chicago, Illinois, USA, July
28-31, 1998., pages 260–267, 1998.

[81] Tao Wan, Evangelos Kranakis, and P. C. Oorschot. Pretty secure BGP (psBGP). In
Proceedings of 12th NDSS, 2005.

[82] Russ White. Securing bgp through secure origin BGP (soBGP). The Internet Protocol
Journal, 6(3):15–22, 2003.

[83] Allison Woodruff and Michael Stonebraker. Supporting fine-grained data lineage in
a database visualization environment. In Proceedings of the Thirteenth International
Conference on Data Engineering, April 7-11, 1997 Birmingham U.K., pages 91–102,
1997.

[84] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo. Auto-
mated network repair with meta provenance. In Proceedings of the 14th ACM Workshop
on Hot Topics in Networks, Philadelphia, PA, USA, November 16 - 17, 2015, pages
26:1–26:7, 2015.

[85] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou, and Boon Thau Loo.
Diagnosing missing events in distributed systems with negative provenance. In ACM
SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014,
pages 383–394, 2014.

[86] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng, Yan Li, and Darrell D. E.
Long. Evaluation of a hybrid approach for efficient provenance storage. TOS, 9(4):14,
2013.

167

[87] L Yuan, H Chen, J Mai, C. N. Chuah, Z Su, and P Mohapatra. Fireman: A toolkit
for firewall modeling and analysis. In SRSP, 2006.

[88] Z3. http://z3.codeplex.com/.

[89] Ellen W. Zegura, Kenneth L. Calvert, and Samrat Bhattacharjee. How to model an
internetwork. In Proceedings IEEE INFOCOM ’96, The Conference on Computer Com-
munications, Fifteenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies, Networking the Next Generation, San Francisco, CA, USA, March
24-28, 1996, pages 594–602, 1996.

[90] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda Liu,
Nick McKeown, , and Amin Vahdat. Libra: Divide and conquer to verify forwarding
tables in huge networks. In NSDI, 2014.

[91] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig, and
David G. Andersen. Scion: Scalability, control, and isolation on next-generation net-
works. In Proceedings of Oakland S&P, 2011.

[92] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau Loo, and
Micah Sherr. Secure network provenance. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal, October 23-26,
2011, pages 295–310, 2011.

[93] Wenchao Zhou, Yun Mao, Boon Thau Loo, and Mart́ın Abadi. Unified Declarative
Platform for Secure Networked Information Systems. In ICDE, 2009.

[94] Wenchao Zhou, Suyog Mapara, Yiqing Ren, Yang Li, Andreas Haeberlen, Zachary G.
Ives, Boon Thau Loo, and Micah Sherr. Distributed time-aware provenance. PVLDB,
6(2):49–60, 2012.

[95] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun Mao.
Efficient querying and maintenance of network provenance at internet-scale. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 615–626, 2010.

[96] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun Mao.
Efficient querying and maintenance of network provenance at internet-scale. In Pro-
ceedings of ACM SIGMOD International Conference on Management of Data, 2010.

168

	University of Pennsylvania
	ScholarlyCommons
	2017

	Unifying Static And Runtime Analysis In Declarative Distributed Systems
	Chen Chen
	Recommended Citation

	Unifying Static And Runtime Analysis In Declarative Distributed Systems
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	ACKNOWLEDGMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	Introduction
	Background
	Network Datalog

	Theorem Proving with Program Logic
	SANDlog
	A Program Logic for SANDlog
	Verification Condition Generator
	Case Studies

	Automated Verification and Debugging with Symbolic Execution
	Overview
	Analyzing Non-recursive Programs
	Extension to Recursive Programs
	Case Study

	Runtime Analysis with Compressed Provenance
	Background
	Model
	Basic Storage Optimization
	Equivalence-based Compression
	Implementation
	Evaluation

	Related Work
	Static Analysis of Distributed Systems
	Runtime Analysis of Distributed Systems

	Future Work
	A More Complete Framework of Provenance Compression
	Optimization of Static Analysis

	Conclusion
	BIBLIOGRAPHY

