252 research outputs found

    Artificial Intelligence Empowered UAVs Data Offloading in Mobile Edge Computing

    Get PDF
    The advances introduced by Unmanned Aerial Vehicles (UAVs) are manifold and have paved the path for the full integration of UAVs, as intelligent objects, into the Internet of Things (IoT). This paper brings artificial intelligence into the UAVs data offloading process in a multi-server Mobile Edge Computing (MEC) environment, by adopting principles and concepts from game theory and reinforcement learning. Initially, the autonomous MEC server selection for partial data offloading is performed by the UAVs, based on the theory of the stochastic learning automata. A non-cooperative game among the UAVs is then formulated to determine the UAVs\u27 data to be offloaded to the selected MEC servers, while the existence of at least one Nash Equilibrium (NE) is proven exploiting the power of submodular games. A best response dynamics framework and two alternative reinforcement learning algorithms are introduced that converge to a NE, and their trade-offs are discussed. The overall framework performance evaluation is achieved via modeling and simulation, in terms of its efficiency and effectiveness, under different operation approaches and scenarios

    Agent-Based System for Mobile Service Adaptation Using Online Machine Learning and Mobile Cloud Computing Paradigm

    Get PDF
    An important aspect of modern computer systems is their ability to adapt. This is particularly important in the context of the use of mobile devices, which have limited resources and are able to work longer and more efficiently through adaptation. One possibility for the adaptation of mobile service execution is the use of the Mobile Cloud Computing (MCC) paradigm, which allows such services to run in computational clouds and only return the result to the mobile device. At the same time, the importance of machine learning used to optimize various computer systems is increasing. The novel concept proposed by the authors extends the MCC paradigm to add the ability to run services on a PC (e.g. at home). The solution proposed utilizes agent-based concepts in order to create a system that operates in a heterogeneous environment. Machine learning algorithms are used to optimize the performance of mobile services online on mobile devices. This guarantees scalability and privacy. As a result, the solution makes it possible to reduce service execution time and power consumption by mobile devices. In order to evaluate the proposed concept, an agent-based system for mobile service adaptation was implemented and experiments were performed. The solution developed demonstrates that extending the MCC paradigm with the simultaneous use of machine learning and agent-based concepts allows for the effective adaptation and optimization of mobile services

    Secure Communication Model for Dynamic Task Offloading in Multi-Cloud Environment

    Get PDF
    As the data is increasing day-by-day, the mobile device storage space is not sufficient to store the complete information and also the computation capacity also is a limited resource which is not sufficient for performing all the required computations. Hence, cloud computing technology is used to overcome these limitations of the mobile device. But security is the main concern in the cloud server. Hence, secure communication model for dynamic task offloading in multi-cloud environment is proposed in this paper. Cloudlet also is used in this model. Triple DES with 2 keys is used during the communication process between the mobile device and cloudlet. Triple DES with 3 keys is used by the cloudlet while offloading the data to cloud server. AES is used by the mobile device while offloading the data to the cloud server. Computation time, communication time, average running time, and energy consumed by the mobile device are the parameters which are used to evaluate the performance of the proposed system, SCM_DTO. The performance of the proposed system, SCM_DTO is compared with ECDH-SAHE and is proved to be performing better
    • …
    corecore