27,378 research outputs found

    ADAPTS: An Intelligent Sustainable Conceptual Framework for Engineering Projects

    Get PDF
    This paper presents a conceptual framework for the optimization of environmental sustainability in engineering projects, both for products and industrial facilities or processes. The main objective of this work is to propose a conceptual framework to help researchers to approach optimization under the criteria of sustainability of engineering projects, making use of current Machine Learning techniques. For the development of this conceptual framework, a bibliographic search has been carried out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability. This work is part of a broader line of research, in terms of optimization under sustainability criteria.Telefónica Chair “Intelligence in Networks” of the University of Seville (Spain

    Ethical Implications of Predictive Risk Intelligence

    Get PDF
    open access articleThis paper presents a case study on the ethical issues that relate to the use of Smart Information Systems (SIS) in predictive risk intelligence. The case study is based on a company that is using SIS to provide predictive risk intelligence in supply chain management (SCM), insurance, finance and sustainability. The pa-per covers an assessment of how the company recognises ethical concerns related to SIS and the ways it deals with them. Data was collected through a document review and two in-depth semi-structured interviews. Results from the case study indicate that the main ethical concerns with the use of SIS in predictive risk intelli-gence include protection of the data being used in predicting risk, data privacy and consent from those whose data has been collected from data providers such as so-cial media sites. Also, there are issues relating to the transparency and accountabil-ity of processes used in predictive intelligence. The interviews highlighted the issue of bias in using the SIS for making predictions for specific target clients. The last ethical issue was related to trust and accuracy of the predictions of the SIS. In re-sponse to these issues, the company has put in place different mechanisms to ensure responsible innovation through what it calls Responsible Data Science. Under Re-sponsible Data Science, the identified ethical issues are addressed by following a code of ethics, engaging with stakeholders and ethics committees. This paper is important because it provides lessons for the responsible implementation of SIS in industry, particularly for start-ups. The paper acknowledges ethical issues with the use of SIS in predictive risk intelligence and suggests that ethics should be a central consideration for companies and individuals developing SIS to create meaningful positive change for society

    SANTO: Social Aerial NavigaTion in Outdoors

    Get PDF
    In recent years, the advances in remote connectivity, miniaturization of electronic components and computing power has led to the integration of these technologies in daily devices like cars or aerial vehicles. From these, a consumer-grade option that has gained popularity are the drones or unmanned aerial vehicles, namely quadrotors. Although until recently they have not been used for commercial applications, their inherent potential for a number of tasks where small and intelligent devices are needed is huge. However, although the integrated hardware has advanced exponentially, the refinement of software used for these applications has not beet yet exploited enough. Recently, this shift is visible in the improvement of common tasks in the field of robotics, such as object tracking or autonomous navigation. Moreover, these challenges can become bigger when taking into account the dynamic nature of the real world, where the insight about the current environment is constantly changing. These settings are considered in the improvement of robot-human interaction, where the potential use of these devices is clear, and algorithms are being developed to improve this situation. By the use of the latest advances in artificial intelligence, the human brain behavior is simulated by the so-called neural networks, in such a way that computing system performs as similar as possible as the human behavior. To this end, the system does learn by error which, in an akin way to the human learning, requires a set of previous experiences quite considerable, in order for the algorithm to retain the manners. Applying these technologies to robot-human interaction do narrow the gap. Even so, from a bird's eye, a noticeable time slot used for the application of these technologies is required for the curation of a high-quality dataset, in order to ensure that the learning process is optimal and no wrong actions are retained. Therefore, it is essential to have a development platform in place to ensure these principles are enforced throughout the whole process of creation and optimization of the algorithm. In this work, multiple already-existing handicaps found in pipelines of this computational gauge are exposed, approaching each of them in a independent and simple manner, in such a way that the solutions proposed can be leveraged by the maximum number of workflows. On one side, this project concentrates on reducing the number of bugs introduced by flawed data, as to help the researchers to focus on developing more sophisticated models. On the other side, the shortage of integrated development systems for this kind of pipelines is envisaged, and with special care those using simulated or controlled environments, with the goal of easing the continuous iteration of these pipelines.Thanks to the increasing popularity of drones, the research and development of autonomous capibilities has become easier. However, due to the challenge of integrating multiple technologies, the available software stack to engage this task is restricted. In this thesis, we accent the divergencies among unmanned-aerial-vehicle simulators and propose a platform to allow faster and in-depth prototyping of machine learning algorithms for this drones

    Technofixing the Future: Ethical Side Effects of Using AI and Big Data to meet the SDGs

    Get PDF
    While the use of smart information systems (the combination of AI and Big Data) offer great potential for meeting many of the UN’s Sustainable Development Goals (SDGs), they also raise a number of ethical challenges in their implementation. Through the use of six empirical case studies, this paper will examine potential ethical issues relating to use of SIS to meet the challenges in six of the SDGs (2, 3, 7, 8, 11, and 12). The paper will show that often a simple “technofix”, such as through the use of SIS, is not sufficient and may exacerbate, or create new, issues for the development community using SIS

    Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability

    Get PDF
    The integrated - environmental, economic and social - analysis of climate change calls for a paradigm shift as it is fundamentally a problem of complex, bottom-up and multi-agent human behaviour. There is a growing awareness that global environmental change dynamics and the related socio-economic implications involve a degree of complexity that requires an innovative modelling of combined social and ecological systems. Climate change policy can no longer be addressed separately from a broader context of adaptation and sustainability strategies. A vast body of literature on agent-based modelling (ABM) shows its potential to couple social and environmental models, to incorporate the influence of micro-level decision making in the system dynamics and to study the emergence of collective responses to policies. However, there are few publications which concretely apply this methodology to the study of climate change related issues. The analysis of the state of the art reported in this paper supports the idea that today ABM is an appropriate methodology for the bottom-up exploration of climate policies, especially because it can take into account adaptive behaviour and heterogeneity of the system's components.Review, Agent-Based Modelling, Socio-Ecosystems, Climate Change, Adaptation, Complexity.

    The Future of Human-Artificial Intelligence Nexus and its Environmental Costs

    Get PDF
    The environmental costs and energy constraints have become emerging issues for the future development of Machine Learning (ML) and Artificial Intelligence (AI). So far, the discussion on environmental impacts of ML/AI lacks a perspective reaching beyond quantitative measurements of the energy-related research costs. Building on the foundations laid down by Schwartz et al., 2019 in the GreenAI initiative, our argument considers two interlinked phenomena, the gratuitous generalisation capability and the future where ML/AI performs the majority of quantifiable inductive inferences. The gratuitous generalisation capability refers to a discrepancy between the cognitive demands of a task to be accomplished and the performance (accuracy) of a used ML/AI model. If the latter exceeds the former because the model was optimised to achieve the best possible accuracy, it becomes inefficient and its operation harmful to the environment. The future dominated by the non-anthropic induction describes a use of ML/AI so all-pervasive that most of the inductive inferences become furnished by ML/AI generalisations. The paper argues that the present debate deserves an expansion connecting the environmental costs of research and ineffective ML/AI uses (the issue of gratuitous generalisation capability) with the (near) future marked by the all-pervasive Human-Artificial Intelligence Nexus

    Partition strategies for incremental Mini-Bucket

    Get PDF
    Los modelos en grafo probabilísticos, tales como los campos aleatorios de Markov y las redes bayesianas, ofrecen poderosos marcos de trabajo para la representación de conocimiento y el razonamiento en modelos con gran número de variables. Sin embargo, los problemas de inferencia exacta en modelos de grafos son NP-hard en general, lo que ha causado que se produzca bastante interés en métodos de inferencia aproximados. El mini-bucket incremental es un marco de trabajo para inferencia aproximada que produce como resultado límites aproximados inferior y superior de la función de partición exacta, a base de -empezando a partir de un modelo con todos los constraints relajados, es decir, con las regiones más pequeñas posibleincrementalmente añadir regiones más grandes a la aproximación. Los métodos de inferencia aproximada que existen actualmente producen límites superiores ajustados de la función de partición, pero los límites inferiores suelen ser demasiado imprecisos o incluso triviales. El objetivo de este proyecto es investigar estrategias de partición que mejoren los límites inferiores obtenidos con el algoritmo de mini-bucket, trabajando dentro del marco de trabajo de mini-bucket incremental. Empezamos a partir de la idea de que creemos que debería ser beneficioso razonar conjuntamente con las variables de un modelo que tienen una alta correlación, y desarrollamos una estrategia para la selección de regiones basada en esa idea. Posteriormente, implementamos nuestra estrategia y exploramos formas de mejorarla, y finalmente medimos los resultados obtenidos usando nuestra estrategia y los comparamos con varios métodos de referencia. Nuestros resultados indican que nuestra estrategia obtiene límites inferiores más ajustados que nuestros dos métodos de referencia. También consideramos y descartamos dos posibles hipótesis que podrían explicar esta mejora.Els models en graf probabilístics, com bé els camps aleatoris de Markov i les xarxes bayesianes, ofereixen poderosos marcs de treball per la representació del coneixement i el raonament en models amb grans quantitats de variables. Tanmateix, els problemes d’inferència exacta en models de grafs son NP-hard en general, el qual ha provocat que es produeixi bastant d’interès en mètodes d’inferència aproximats. El mini-bucket incremental es un marc de treball per a l’inferència aproximada que produeix com a resultat límits aproximats inferior i superior de la funció de partició exacta que funciona començant a partir d’un model al qual se li han relaxat tots els constraints -és a dir, un model amb les regions més petites possibles- i anar afegint a l’aproximació regions incrementalment més grans. Els mètodes d’inferència aproximada que existeixen actualment produeixen límits superiors ajustats de la funció de partició. Tanmateix, els límits inferiors acostumen a ser massa imprecisos o fins aviat trivials. El objectiu d’aquest projecte es recercar estratègies de partició que millorin els límits inferiors obtinguts amb l’algorisme de mini-bucket, treballant dins del marc de treball del mini-bucket incremental. La nostra idea de partida pel projecte es que creiem que hauria de ser beneficiós per la qualitat de l’aproximació raonar conjuntament amb les variables del model que tenen una alta correlació entre elles, i desenvolupem una estratègia per a la selecció de regions basada en aquesta idea. Posteriorment, implementem la nostra estratègia i explorem formes de millorar-la, i finalment mesurem els resultats obtinguts amb la nostra estratègia i els comparem a diversos mètodes de referència. Els nostres resultats indiquen que la nostra estratègia obté límits inferiors més ajustats que els nostres dos mètodes de referència. També considerem i descartem dues possibles hipòtesis que podrien explicar aquesta millora.Probabilistic graphical models such as Markov random fields and Bayesian networks provide powerful frameworks for knowledge representation and reasoning over models with large numbers of variables. Unfortunately, exact inference problems on graphical models are generally NP-hard, which has led to signifi- cant interest in approximate inference algorithms. Incremental mini-bucket is a framework for approximate inference that provides upper and lower bounds on the exact partition function by, starting from a model with completely relaxed constraints, i.e. with the smallest possible regions, incrementally adding larger regions to the approximation. Current approximate inference algorithms provide tight upper bounds on the exact partition function but loose or trivial lower bounds. This project focuses on researching partitioning strategies that improve the lower bounds obtained with mini-bucket elimination, working within the framework of incremental mini-bucket. We start from the idea that variables that are highly correlated should be reasoned about together, and we develop a strategy for region selection based on that idea. We implement the strategy and explore ways to improve it, and finally we measure the results obtained using the strategy and compare them to several baselines. We find that our strategy performs better than both of our baselines. We also rule out several possible explanations for the improvement
    corecore