681,278 research outputs found
Computation in Classical Mechanics
There is a growing consensus that physics majors need to learn computational
skills, but many departments are still devoid of computation in their physics
curriculum. Some departments may lack the resources or commitment to create a
dedicated course or program in computational physics. One way around this
difficulty is to include computation in a standard upper-level physics course.
An intermediate classical mechanics course is particularly well suited for
including computation. We discuss the ways we have used computation in our
classical mechanics courses, focusing on how computational work can improve
students' understanding of physics as well as their computational skills. We
present examples of computational problems that serve these two purposes. In
addition, we provide information about resources for instructors who would like
to include computation in their courses.Comment: 6 pages, 3 figures, submitted to American Journal of Physic
Computational physics of the mind
In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures
Computational Physics on Graphics Processing Units
The use of graphics processing units for scientific computations is an
emerging strategy that can significantly speed up various different algorithms.
In this review, we discuss advances made in the field of computational physics,
focusing on classical molecular dynamics, and on quantum simulations for
electronic structure calculations using the density functional theory, wave
function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012,
Helsinki, Finland, June 10-13, 201
Computational physics
Fully updated new edition for graduate students and researchers in theoretical, computational and experimental physics
On the Prevalence and Nature of Computational Instruction in Undergraduate Physics Programs across the United States
A national survey of physics faculty was conducted to investigate the
prevalence and nature of computational instruction in physics courses across
the United States. 1246 faculty from 357 unique institutions responded to the
survey. The results suggest that more faculty have some form of computational
teaching experience than a decade ago, but it appears that this experience does
not necessarily translate to computational instruction in undergraduate
students' formal course work. Further, we find that formal programs in
computational physics are absent from most departments. A majority of faculty
do report using computation on homework and in projects, but few report using
computation with interactive engagement methods in the classroom or on exams.
Specific factors that underlie these results are the subject of future work,
but we do find that there is a variation on the reported experience with
computation and the highest degree that students can earn at the surveyed
institutions.Comment: 8 pages, 6 figure
- …