681,278 research outputs found

    Computation in Classical Mechanics

    Full text link
    There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.Comment: 6 pages, 3 figures, submitted to American Journal of Physic

    Computational physics of the mind

    Get PDF
    In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures

    Computational Physics on Graphics Processing Units

    Full text link
    The use of graphics processing units for scientific computations is an emerging strategy that can significantly speed up various different algorithms. In this review, we discuss advances made in the field of computational physics, focusing on classical molecular dynamics, and on quantum simulations for electronic structure calculations using the density functional theory, wave function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 201

    Computational physics

    Get PDF
    Fully updated new edition for graduate students and researchers in theoretical, computational and experimental physics

    On the Prevalence and Nature of Computational Instruction in Undergraduate Physics Programs across the United States

    Full text link
    A national survey of physics faculty was conducted to investigate the prevalence and nature of computational instruction in physics courses across the United States. 1246 faculty from 357 unique institutions responded to the survey. The results suggest that more faculty have some form of computational teaching experience than a decade ago, but it appears that this experience does not necessarily translate to computational instruction in undergraduate students' formal course work. Further, we find that formal programs in computational physics are absent from most departments. A majority of faculty do report using computation on homework and in projects, but few report using computation with interactive engagement methods in the classroom or on exams. Specific factors that underlie these results are the subject of future work, but we do find that there is a variation on the reported experience with computation and the highest degree that students can earn at the surveyed institutions.Comment: 8 pages, 6 figure
    • …
    corecore