17,995 research outputs found

    Power of Criminal Attractors: Modeling the Pull of Activity Nodes

    Get PDF
    The spatial distribution of crime has been a long-standing interest in the field of criminology. Research in this area has shown that activity nodes and travel paths are key components that help to define patterns of offending. Little research, however, has considered the influence of activity nodes on the spatial distribution of crimes in crime neutral areas - those where crimes are more haphazardly dispersed. Further, a review of the literature has revealed a lack of research in determining the relative strength of attraction that different types of activity nodes possess based on characteristics of criminal events in their immediate surrounds. In this paper we use offenders' home locations and the locations of their crimes to define directional and distance parameters. Using these parameters we apply mathematical structures to define rules by which different models may behave to investigate the influence of activity nodes on the spatial distribution of crimes in crime neutral areas. The findings suggest an increasing likelihood of crime as a function of geometric angle and distance from an offender's home location to the site of the criminal event. Implications of the results are discussed.Crime Attractor, Directionality of Crime, Mathematical Modeling, Computational Criminology

    SOPHIA

    Get PDF
    The Iraqi Insurgency (2003ā€“2011) has commonly been characterized as demonstrating the tendency for violence to cluster and diffuse at the local level. Recent research has demonstrated that insurgent attacks in Iraq cluster in time and space in a manner similar to that observed for the spread of a disease. The current study employs a variety of approaches common to the scientific study of criminal activities to advance our understanding of the correlates of observed patterns of the incidence and contagion of insurgent attacks. We hypothesize that the precise patterns will vary from one place to another, but that more attacks will occur in areas that are heavily populated, where coalition forces are active, and along road networks. To test these hypotheses, we use a fishnet to build a geographical model of Baghdad that disaggregates the city into more than 3000 grid cell locations. A number of logistic regression models with spatial and temporal lags are employed to explore patterns of local escalation and diffusion. These models demonstrate the validity of arguments under each of three models but suggest, overall, that risk heterogeneity arguments provide the most compelling and consistent account of the location of insurgency. In particular, the results demonstrate that violence is most likely at locations with greater population levels, higher density of roads, and military garrisons

    Modeling and Estimation for Self-Exciting Spatio-Temporal Models of Terrorist Activity

    Get PDF
    Spatio-temporal hierarchical modeling is an extremely attractive way to model the spread of crime or terrorism data over a given region, especially when the observations are counts and must be modeled discretely. The spatio-temporal diffusion is placed, as a matter of convenience, in the process model allowing for straightforward estimation of the diffusion parameters through Bayesian techniques. However, this method of modeling does not allow for the existence of self-excitation, or a temporal data model dependency, that has been shown to exist in criminal and terrorism data. In this manuscript we will use existing theories on how violence spreads to create models that allow for both spatio-temporal diffusion in the process model as well as temporal diffusion, or self-excitation, in the data model. We will further demonstrate how Laplace approximations similar to their use in Integrated Nested Laplace Approximation can be used to quickly and accurately conduct inference of self-exciting spatio-temporal models allowing practitioners a new way of fitting and comparing multiple process models. We will illustrate this approach by fitting a self-exciting spatio-temporal model to terrorism data in Iraq and demonstrate how choice of process model leads to differing conclusions on the existence of self-excitation in the data and differing conclusions on how violence is spreading spatio-temporally

    Growth and Containment of a Hierarchical Criminal Network

    Full text link
    We model the hierarchical evolution of an organized criminal network via antagonistic recruitment and pursuit processes. Within the recruitment phase, a criminal kingpin enlists new members into the network, who in turn seek out other affiliates. New recruits are linked to established criminals according to a probability distribution that depends on the current network structure. At the same time, law enforcement agents attempt to dismantle the growing organization using pursuit strategies that initiate on the lower level nodes and that unfold as self-avoiding random walks. The global details of the organization are unknown to law enforcement, who must explore the hierarchy node by node. We halt the pursuit when certain local criteria of the network are uncovered, encoding if and when an arrest is made; the criminal network is assumed to be eradicated if the kingpin is arrested. We first analyze recruitment and study the large scale properties of the growing network; later we add pursuit and use numerical simulations to study the eradication probability in the case of three pursuit strategies, the time to first eradication and related costs. Within the context of this model, we find that eradication becomes increasingly costly as the network increases in size and that the optimal way of arresting the kingpin is to intervene at the early stages of network formation. We discuss our results in the context of dark network disruption and their implications on possible law enforcement strategies.Comment: 16 pages, 11 Figures; New title; Updated figures with color scheme better suited for colorblind readers and for gray scale printin

    Neuroprediction and A.I. in Forensic Psychiatry and Criminal Justice: A Neurolaw Perspective

    Get PDF
    Advances in the use of neuroimaging in combination with A.I., and specifically the use of machine learning techniques, have led to the development of brain-reading technologies which, in the nearby future, could have many applications, such as lie detection, neuromarketing or brain-computer interfaces. Some of these could, in principle, also be used in forensic psychiatry. The application of these methods in forensic psychiatry could, for instance, be helpful to increase the accuracy of risk assessment and to identify possible interventions. This technique could be referred to as ā€˜A.I. neuroprediction,ā€™ and involves identifying potential neurocognitive markers for the prediction of recidivism. However, the future implications of this technique and the role of neuroscience and A.I. in violence risk assessment remain to be established. In this paper, we review and analyze the literature concerning the use of brain-reading A.I. for neuroprediction of violence and rearrest to identify possibilities and challenges in the future use of these techniques in the fields of forensic psychiatry and criminal justice, considering legal implications and ethical issues. The analysis suggests that additional research is required on A.I. neuroprediction techniques, and there is still a great need to understand how they can be implemented in risk assessment in the field of forensic psychiatry. Besides the alluring potential of A.I. neuroprediction, we argue that its use in criminal justice and forensic psychiatry should be subjected to thorough harms/benefits analyses not only when these technologies will be fully available, but also while they are being researched and developed
    • ā€¦
    corecore