3 research outputs found

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur

    Fast and revenue-oriented protection of radial LV cables with smart battery operation

    Get PDF
    Low-voltage radial electricity cables will have more and more difficulties to carry the increasing load of novel consumption devices (e.g. electric vehicles) and the expected generated input of decentrally-generated power (e.g. from photovoltaic cells). One solution to avoid replacement is to install a battery at the end of a cable which is expected to be overloaded frequently. The intelligent operation of this battery needs to combine the protection of the cable with optimizing its revenue, in order to be economically viable. This paper formulates the offline optimization problem and proposes two robust heuristic online strategies. We show in computer simulations that these heuristics, which make fast just-in-time responses, reliably deliver good results. Our second heuristic, H2, reaches up to 83% of the approximated theoretical optimum
    corecore