658 research outputs found

    A Survey on Visual Analytics of Social Media Data

    Get PDF
    The unprecedented availability of social media data offers substantial opportunities for data owners, system operators, solution providers, and end users to explore and understand social dynamics. However, the exponential growth in the volume, velocity, and variability of social media data prevents people from fully utilizing such data. Visual analytics, which is an emerging research direction, ha..

    Template-based Abstractive Microblog Opinion Summarisation

    Full text link
    We introduce the task of microblog opinion summarisation (MOS) and share a dataset of 3100 gold-standard opinion summaries to facilitate research in this domain. The dataset contains summaries of tweets spanning a 2-year period and covers more topics than any other public Twitter summarisation dataset. Summaries are abstractive in nature and have been created by journalists skilled in summarising news articles following a template separating factual information (main story) from author opinions. Our method differs from previous work on generating gold-standard summaries from social media, which usually involves selecting representative posts and thus favours extractive summarisation models. To showcase the dataset's utility and challenges, we benchmark a range of abstractive and extractive state-of-the-art summarisation models and achieve good performance, with the former outperforming the latter. We also show that fine-tuning is necessary to improve performance and investigate the benefits of using different sample sizes.Comment: Accepted for publication in Transactions of the Association for Computational Linguistics (TACL), 2022. Pre-MIT Press publication versio

    A comparison of statistical machine learning methods in heartbeat detection and classification

    Get PDF
    In health care, patients with heart problems require quick responsiveness in a clinical setting or in the operating theatre. Towards that end, automated classification of heartbeats is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of electro-cardiogram (ECG) signals is an active area of research. The methods proposed in the literature depend on the structure of a heartbeat cycle. In this paper, we use interval and amplitude based features together with a few samples from the ECG signal as a feature vector. We studied a variety of classification algorithms focused especially on a type of arrhythmia known as the ventricular ectopic fibrillation (VEB). We compare the performance of the classifiers against algorithms proposed in the literature and make recommendations regarding features, sampling rate, and choice of the classifier to apply in a real-time clinical setting. The extensive study is based on the MIT-BIH arrhythmia database. Our main contribution is the evaluation of existing classifiers over a range sampling rates, recommendation of a detection methodology to employ in a practical setting, and extend the notion of a mixture of experts to a larger class of algorithms

    Network Analysis on Incomplete Structures.

    Full text link
    Over the past decade, networks have become an increasingly popular abstraction for problems in the physical, life, social and information sciences. Network analysis can be used to extract insights into an underlying system from the structure of its network representation. One of the challenges of applying network analysis is the fact that networks do not always have an observed and complete structure. This dissertation focuses on the problem of imputation and/or inference in the presence of incomplete network structures. I propose four novel systems, each of which, contain a module that involves the inference or imputation of an incomplete network that is necessary to complete the end task. I first propose EdgeBoost, a meta-algorithm and framework that repeatedly applies a non-deterministic link predictor to improve the efficacy of community detection algorithms on networks with missing edges. On average EdgeBoost improves performance of existing algorithms by 7% on artificial data and 17% on ego networks collected from Facebook. The second system, Butterworth, identifies a social network user's topic(s) of interests and automatically generates a set of social feed ``rankers'' that enable the user to see topic specific sub-feeds. Butterworth uses link prediction to infer the missing semantics between members of a user's social network in order to detect topical clusters embedded in the network structure. For automatically generated topic lists, Butterworth achieves an average top-10 precision of 78%, as compared to a time-ordered baseline of 45%. Next, I propose Dobby, a system for constructing a knowledge graph of user-defined keyword tags. Leveraging a sparse set of labeled edges, Dobby trains a supervised learning algorithm to infer the hypernym relationships between keyword tags. Dobby was evaluated by constructing a knowledge graph of LinkedIn's skills dataset, achieving an average precision of 85% on a set of human labeled hypernym edges between skills. Lastly, I propose Lobbyback, a system that automatically identifies clusters of documents that exhibit text reuse and generates ``prototypes'' that represent a canonical version of text shared between the documents. Lobbyback infers a network structure in a corpus of documents and uses community detection in order to extract the document clusters.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133443/1/mattburg_1.pd
    corecore