36,613 research outputs found

    Virtual Reality of Earthquake Ground Motions for Emergency Response

    Get PDF
    Ground motions interface earthquake science and engineering to advance understanding of seismic hazards and risk. Virtual reality provides an attractive tool to extend knowledge of the research community to a larger audience. This work visualizes emergency response under extreme motions, in the CAVE of the MARquette Visualization Laboratory. The visualization (a) displays ground motions (from the science community), (b) inputs these motions to structural models (from the engineering community) and illustrates the resulting responses, (c) translates structural responses to damage states of building elements, (d) creates a virtual room subjected to the perception associated with such earthquake shaking, and (e) introduces the human element of emergency response in this immersive environment. Building upon previous work on earthquake simulations, performance-based earthquake engineering (PBEE), building information modeling (BIM), and earthquake awareness, this study integrates elements of PBEE and BIM within the CAVE environment to provide visual information for decision making. Real-time or near real-time information via earthquake early warning (EEW) and structural health monitoring (SHM) further facilitates response within a limited time frame. As advanced technologies contribute to the future of community resilience, visualization plays an emerging role in connecting earthquake science, engineering, and policy

    Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes

    Get PDF
    Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography

    Estudi comparatiu de la publicació científica de la UPC i l’Escola de Camins vs.altres universitats d’àmbit internacional (2009-2018)

    Get PDF
    L'informe se centra en la publicació científica especialitzada en l'àmbit temàtic propi de l'Escola de Camins: l'enginyeria civil. Es comparen indicadors bibliomètrics de la UPC i l'Escola de Camins amb els d'altres universitats internacionals amb activitat de recerca notable en l'àmbit de l'enginyeria civilPostprint (published version

    Spectral-element modeling of spontaneous earthquake rupture on rate and state faults: Effect of velocity-strengthening friction at shallow depths

    Get PDF
    We develop a spectral-element methodology (SEM) for simulating dynamic rupture on rate and state faults and use it to study how the rupture is affected by a shallow fault region of steady-state velocity-strengthening friction. Our comparison of the developed SEM and a spectral boundary-integral method (BIM) for an anti-plane (two-dimensional) test problem shows that the two methods produce virtually identical solutions for the finest resolution we use and that the convergence with grid reduction of the developed SEM methodology is comparable to that of BIM. We also use the test problem to compare numerical resolution required for different state evolution laws and for linear slip-weakening friction. Using our three-dimensional implementation of the methodology, we find that a shallow velocity-strengthening fault region can significantly alter dynamic rupture and ground motion. The velocity-strengthening region suppresses supershear propagation at the free surface occurring in the absence of such region, which could explain the lack of universally observed supershear rupture near the free surface. In addition, the velocity-strengthening region promotes faster fall-off of slip velocity behind the rupture front and decreases final slip throughout the entire fault, causing a smaller average stress drop. The slip decrease is largest in the shallow parts of the fault, resulting in the depth profile of slip qualitatively consistent with observations of shallow co-seismic slip deficit. The shallow velocity-strengthening region also reduces the amplification of strong ground motion due to a low-velocity bulk structure
    • …
    corecore