17 research outputs found

    Computational Depth and Reducibility

    Get PDF
    This paper investigates Bennett\u27s notions of strong and weak computational depth (also called logical depth) for infinite binary sequences. Roughly, an infinite binary sequence x is defined to be weakly useful if every element of a non-negligible set of decidable sequences is reducible to x in recursively bounded time. It is shown that every weakly useful sequence is strongly deep. This result (which generalizes Bennett\u27s observation that the halting problem is strongly deep) implies that every high Turing degree contains strongly deep sequences. It is also shown that, in the sense of Baire category, almost every infinite binary sequence is weakly deep, but not strongly deep

    Depth, Highness and DNR degrees

    Get PDF
    We study Bennett deep sequences in the context of recursion theory; in particular we investigate the notions of O(1)-deepK, O(1)-deepC , order-deep K and order-deep C sequences. Our main results are that Martin-Loef random sets are not order-deepC , that every many-one degree contains a set which is not O(1)-deepC , that O(1)-deepC sets and order-deepK sets have high or DNR Turing degree and that no K-trival set is O(1)-deepK.Comment: journal version, dmtc

    A General Notion of Useful Information

    Full text link
    In this paper we introduce a general framework for defining the depth of a sequence with respect to a class of observers. We show that our general framework captures all depth notions introduced in complexity theory so far. We review most such notions, show how they are particular cases of our general depth framework, and review some classical results about the different depth notions

    Feasible Reductions to Kolmogorov--Loveland Stochastic Sequences

    Get PDF
    For every binary sequence A, there is an infinite binary sequence S such that A is polynomial-time tt-reducible to S and S is stochastic in the sense of Kolmogorov and Loveland

    Depth as randomness deficiency

    Get PDF

    Depth as Randomness Deficiency

    Get PDF
    Depth of an object concerns a tradeoff between computation time and excess of program length over the shortest program length required to obtain the object. It gives an unconditional lower bound on the computation time from a given program in absence of auxiliary information. Variants known as logical depth and computational depth are expressed in Kolmogorov complexity theory. We derive quantitative relation between logical depth and computational depth and unify the different depth notions by relating them to A. Kolmogorov and L. Levin’s fruitful notion of randomness deficiency. Subsequently, we revisit the computational depth of infinite strings, study the notion of super deep sequences and relate it with other approaches

    Complexity, parallel computation and statistical physics

    Full text link
    The intuition that a long history is required for the emergence of complexity in natural systems is formalized using the notion of depth. The depth of a system is defined in terms of the number of parallel computational steps needed to simulate it. Depth provides an objective, irreducible measure of history applicable to systems of the kind studied in statistical physics. It is argued that physical complexity cannot occur in the absence of substantial depth and that depth is a useful proxy for physical complexity. The ideas are illustrated for a variety of systems in statistical physics.Comment: 21 pages, 7 figure
    corecore