19,847 research outputs found

    Finding relevant documents using top ranking sentences: an evaluation of two alternative schemes

    Get PDF
    In this paper we present an evaluation of techniques that are designed to encourage web searchers to interact more with the results of a web search. Two specific techniques are examined: the presentation of sentences that highly match the searcher's query and the use of implicit evidence. Implicit evidence is evidence captured from the searcher's interaction with the retrieval results and is used to automatically update the display. Our evaluation concentrates on the effectiveness and subject perception of these techniques. The results show, with statistical significance, that the techniques are effective and efficient for information seeking

    Stable Matching with Evolving Preferences

    Full text link
    We consider the problem of stable matching with dynamic preference lists. At each time step, the preference list of some player may change by swapping random adjacent members. The goal of a central agency (algorithm) is to maintain an approximately stable matching (in terms of number of blocking pairs) at all times. The changes in the preference lists are not reported to the algorithm, but must instead be probed explicitly by the algorithm. We design an algorithm that in expectation and with high probability maintains a matching that has at most O((log(n))2)O((log (n))^2) blocking pairs.Comment: 13 page

    CSD: Discriminance with Conic Section for Improving Reverse k Nearest Neighbors Queries

    Full text link
    The reverse kk nearest neighbor (RkkNN) query finds all points that have the query point as one of their kk nearest neighbors (kkNN), where the kkNN query finds the kk closest points to its query point. Based on the characteristics of conic section, we propose a discriminance, named CSD (Conic Section Discriminance), to determine points whether belong to the RkkNN set without issuing any queries with non-constant computational complexity. By using CSD, we also implement an efficient RkkNN algorithm CSD-RkkNN with a computational complexity at O(k1.5⋅log k)O(k^{1.5}\cdot log\,k). The comparative experiments are conducted between CSD-RkkNN and other two state-of-the-art RkNN algorithms, SLICE and VR-RkkNN. The experimental results indicate that the efficiency of CSD-RkkNN is significantly higher than its competitors

    Predicting ConceptNet Path Quality Using Crowdsourced Assessments of Naturalness

    Full text link
    In many applications, it is important to characterize the way in which two concepts are semantically related. Knowledge graphs such as ConceptNet provide a rich source of information for such characterizations by encoding relations between concepts as edges in a graph. When two concepts are not directly connected by an edge, their relationship can still be described in terms of the paths that connect them. Unfortunately, many of these paths are uninformative and noisy, which means that the success of applications that use such path features crucially relies on their ability to select high-quality paths. In existing applications, this path selection process is based on relatively simple heuristics. In this paper we instead propose to learn to predict path quality from crowdsourced human assessments. Since we are interested in a generic task-independent notion of quality, we simply ask human participants to rank paths according to their subjective assessment of the paths' naturalness, without attempting to define naturalness or steering the participants towards particular indicators of quality. We show that a neural network model trained on these assessments is able to predict human judgments on unseen paths with near optimal performance. Most notably, we find that the resulting path selection method is substantially better than the current heuristic approaches at identifying meaningful paths.Comment: In Proceedings of the Web Conference (WWW) 201
    • …
    corecore