12 research outputs found

    Quantification of Twist from the Central Lines of β-Strands

    Get PDF
    Since the discovery of right-handed twist of a β-strand, many studies have been conducted to understand the twist. Given the atomic structure of a protein, twist angles have been defined using atomic positions of the backbone. However, limited study is available to characterize twist when the atomic positions are not available, but the central lines of β-strands are. Recent studies in cryoelectron microscopy show that it is possible to predict the central lines of β-strands from a medium-resolution density map. Accurate measurement of twist angles is important in identification of β-strands from such density maps. We propose an effective method to quantify twist angles from a set of splines. In a data set of 55 pairs of β-strands from 11 β-sheets of 11 proteins, the spline measurement shows comparable results as measured using the discrete method that uses atomic positions directly, particularly in capturing twist angle change along a pair, different levels of twist among different pairs, and the average of twist angles. The proposed method provides an alternative method to characterize twist using the central lines of a β-sheet

    Estimating loop length from CryoEM images at medium resolutions

    Get PDF
    Background: De novo protein modeling approaches utilize 3-dimensional (3D) images derived from electron cryomicroscopy (CryoEM) experiments. The skeleton connecting two secondary structures such as α-helices represent the loop in the 3D image. The accuracy of the skeleton and of the detected secondary structures are critical in De novo modeling. It is important to measure the length along the skeleton accurately since the length can be used as a constraint in modeling the protein. Results: We have developed a novel computational geometric approach to derive a simplified curve in order to estimate the loop length along the skeleton. The method was tested using fifty simulated density images of helix-loop-helix segments of atomic structures and eighteen experimentally derived density data from Electron Microscopy Data Bank (EMDB). The test using simulated density maps shows that it is possible to estimate within 0.5 angstrom of the expected length for 48 of the 50 cases. The experiments, involving eighteen experimentally derived CryoEM images, show that twelve cases have error within 2 angstrom. Conclusions:The tests using both simulated and experimentally derived images show that it is possible for our proposed method to estimate the loop length along the skeleton if the secondary structure elements, such as α-helices, can be detected accurately, and there is a continuous skeleton linking the α-helices

    Estimating Loop Length from CryoEM Images at Medium Resolutions

    Get PDF
    Background: De novo protein modeling approaches utilize 3-dimensional (3D) images derived from electron cryomicroscopy (CryoEM) experiments. The skeleton connecting two secondary structures such as α-helices represent the loop in the 3D image. The accuracy of the skeleton and of the detected secondary structures are critical in De novo modeling. It is important to measure the length along the skeleton accurately since the length can be used as a constraint in modeling the protein. Results: We have developed a novel computational geometric approach to derive a simplified curve in order to estimate the loop length along the skeleton. The method was tested using fifty simulated density images of helix-loop-helix segments of atomic structures and eighteen experimentally derived density data from Electron Microscopy Data Bank (EMDB). The test using simulated density maps shows that it is possible to estimate within 0.5 angstrom of the expected length for 48 of the 50 cases. The experiments, involving eighteen experimentally derived CryoEM images, show that twelve cases have error within 2 angstrom. Conclusions:The tests using both simulated and experimentally derived images show that it is possible for our proposed method to estimate the loop length along the skeleton if the secondary structure elements, such as α-helices, can be detected accurately, and there is a continuous skeleton linking the α-helices

    Modeling Beta-Traces for Beta-Barrels from Cryo-EM Density Maps

    Get PDF
    Cryo-electron microscopy (cryo-EM) has produced density maps of various resolutions. Although ά-helices can be detected from density maps at 5-8 angstrom resolutions, β-strands are challenging to detect at such density maps due to close-spacing of β-strands. The variety of shapes of β-sheets adds the complexity of β-strands detection from density maps. We propose a new approach to model traces of β-strands for β-barrel density regions that are extracted from cryo-EM density maps. In the test containing eight β-barrels extracted from experimental cryo-EM density maps at 5.5 angstrom-8.25 angstrom resolution, StrandRoller detected about 74.26% of the amino acids in the β-strands with an overall 2.05 angstrom 2-way distance between the detected β-traces and the observed ones, if the best of the fifteen detection cases is considered

    Numerical Geometry of Map and Model Assessment

    Get PDF
    We are describing best practices and assessment strategies for the atomic interpretation of cryo-electron microscopy (cryo-EM) maps. Multiscale numerical geometry strategies in the Situs package and in secondary structure detection software are currently evolving due to the recent increases in cryo-EM resolution. Criteria that aim to predict the accuracy of fitted atomic models at low (worse than 8 angstrom) and medium (4-8 angstrom) resolutions remain challenging. However, a high level of confidence in atomic models can be achieved by combining such criteria. The observed errors are due to map-model discrepancies and due to the effect of imperfect global docking strategies. Extending the earlier motion capture approach developed for flexible fitting, we use simulated fiducials (pseudoatoms) at varying levels of coarse-graining to track the local drift of structural features. We compare three tracking approaches: naive vector quantization, a smoothly deformable model, and a tessellation of the structure into rigid Voronoi cells, which are fitted using a multi-fragment refinement approach. The lowest error is an upper bound for the (small) discrepancy between the crystal structure and the EM map due to different conditions in their structure determination. When internal features such as secondary structures are visible in medium-resolution EM maps, it is possible to extend the idea of point-based fiducials to more complex geometric representations such as helical axes, strands, and skeletons. We propose quantitative strategies to assess map-model pairs when such secondary structure patterns are prominent

    Comparing an Atomic Model or Structure to a Corresponding Cryo-Electron Microscopy Image at the Central Axis of a Helix

    Get PDF
    Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM maps at 6.4-7.7 Ã… resolution. The arc-length association method is then compared to three existing measures that evaluate the separation of two helical axes: a two-way distance between point sets, the length difference between two axes, and the individual amino acid detection accuracy. The results show that our proposed method sensitively distinguishes lateral and longitudinal discrepancies between the two axes, which makes the method particularly suitable for the systematic investigation of cryo-EM map-model pairs

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Deep Learning for Segmentation Of 3D Cryo-EM Images

    Get PDF
    Cryo-electron microscopy (cryo-EM) is an emerging biophysical technique for structural determination of protein complexes. However, accurate detection of secondary structures is still challenging when cryo-EM density maps are at medium resolutions (5-10 Å). Most existing methods are image processing methods that do not fully utilize available images in the cryo-EM database. In this paper, we present a deep learning approach to segment secondary structure elements as helices and β-sheets from medium- resolution density maps. The proposed 3D convolutional neural network is shown to detect secondary structure locations with an F1 score between 0.79 and 0.88 for six simulated test cases. The architecture was also applied to experimentally-derived cryo- EM density regions of 571 protein chains. . The average F1 score for helix detection is 0.747 and 0.674 for β-sheets in a test involving seven cryo-EM density regions. Additionally, we extend an arc-length association method to β -strands and show that this method for measuring error is superior to many popular methods. An interactive tool is also presented that can visualize the results of this arc-length association method
    corecore