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RESEARCH Open Access

Estimating loop length from CryoEM images at
medium resolutions
Andrew McKnight1, Dong Si1, Kamal Al Nasr2, Andrey Chernikov1, Nikos Chrisochoides1, Jing He1*

From Computational Structural Bioinformatics Workshop 2012
Philadelphia, PA, USA. 4 October 2012

Abstract

Background: De novo protein modeling approaches utilize 3-dimensional (3D) images derived from electron
cryomicroscopy (CryoEM) experiments. The skeleton connecting two secondary structures such as a-helices
represent the loop in the 3D image. The accuracy of the skeleton and of the detected secondary structures are
critical in De novo modeling. It is important to measure the length along the skeleton accurately since the length
can be used as a constraint in modeling the protein.

Results: We have developed a novel computational geometric approach to derive a simplified curve in order to
estimate the loop length along the skeleton. The method was tested using fifty simulated density images of helix-
loop-helix segments of atomic structures and eighteen experimentally derived density data from Electron
Microscopy Data Bank (EMDB). The test using simulated density maps shows that it is possible to estimate within
0.5Å of the expected length for 48 of the 50 cases. The experiments, involving eighteen experimentally derived
CryoEM images, show that twelve cases have error within 2Å.

Conclusions: The tests using both simulated and experimentally derived images show that it is possible for our
proposed method to estimate the loop length along the skeleton if the secondary structure elements, such as a-
helices, can be detected accurately, and there is a continuous skeleton linking the a-helices.

Background
Over the last ten years, electron cryomicroscopy (CryoEM)
experiments yielded increasing numbers of 3D electron
density images of protein molecules. The Electron Micro-
scopy Data Bank (EMDB) currently archives the 3D
images, referred to as density maps in this paper, with a
wide range of resolutions from 3Å to over 80Å [1]. When
the density map is resolved to high resolution (3-5Å) [2,3],
it is possible to derive the near atomic structure from the
density map. However, when the density map is not
resolved to the high resolution range, it is still challenging
to derive the structure of the imaged molecule [4-6]. Fitting
and comparative modeling approaches have been devel-
oped to utilize the existing atomic structures in the Protein
Data Bank (PDB) [6,7]. These approaches apply when a

component of the target density map has been resolved
to near atomic resolution structure or when the target
protein shares significant homology with existing atomic
structures.
Modeling protein molecules using de novo methods is a

general approach to derive the atomic structure from
medium resolution (5-10Å) electron density 3D images
[6,8-10]. Only the 3D image (top left in Figure 1) and
amino acid sequence (top right of Figure 1) are used in de
novo processes. It does not need an atomic template pro-
tein structure from PDB as required for fitting and com-
parative modeling methods. First, the secondary structure
elements (SSEs) such as a-helices (red sticks in Figure 1)
and b-sheets are often identified using pattern recognition
methods [11-16]. Skeletonization methods detect the med-
ial axis (green, left in Figure 1) of a 3D image’s iso-surface
[10,17]. Next, the amino acid sequence segments (red
cylinders, right of Figure 1) of the SSEs can be predicted
using existing prediction tools [18-21]. Various approaches
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have been developed to combine the secondary structure
information from the 3D image and 1D sequence in order
to derive the topology. The atomic structures can be built
once the possible topologies are predicted [6-8].
An amino acid sequence has a direction, starting with a

nitrogen atom (N-terminal) and ending with the a carbon
atom (C-terminal). The SSE topology is the order in which
this sequence traverses the protein’s helices and sheets,
including the direction of entry into and exit from the sec-
ondary structure. The native topology of a protein’s SSEs
is likely to produce the lowest energy state compared to
incorrect topologies [22]. Determining the correct topol-
ogy is a crucial step in de novo modeling. We have formu-
lated the SSE topology problem into a constrained graph

matching problem and provided a dynamic programming
algorithm [9]. We later used a dynamic graph approach to
handle errors in the data [23].
The distance between two SSEs is an important con-

straint in graph matching. As an example, two helices
closely located in a 3D image should be matched to two
helices with similar distance estimated from the 1D
sequence. The distance between two ends of two helices
(one on each) can be simply estimated as the Euclidean
distance [9], or can be measured more accurately along
the skeleton [8,23,24]. From the amino acid sequence
input, the distance between SSEs can be estimated
assuming a 3.8Å distance between adjacent amino acids
in the sequence. A scoring function can be developed to

Figure 1 Deriving the topology of the secondary structure elements from CryoEM images. The skeleton (green) and detected helices (red)
derived from the density map (gray) are combined with the predicted sequence segments of the helices to form a topology graph [8,9,23].
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represent the overall matching between two sets of SSEs,
one from the 3D image and the other from the 1D
sequence. The correct topology is assumed to be the one
with the best match score.
Despite the relative accuracy of skeletonization algo-

rithms, overestimation may occur if length is measured
directly along their piecewise linear curves, which contain
many right angles and some error from the thinning pro-
cess and the 3D image itself.
Here, we extend our previous work in [25], in which

we obtained preliminary results testing a computational-
geometric method to measure the length of a simplified
skeleton. In addition to expanding our test set to include
synthetically generated density maps and additional
experimentally derived data, we used the directed Haus-
dorff distance to handle segmentation issues. The mea-
sured length appears to agree with the expected length
when the SSEs are detected fairly accurately.

Results and discussion
Test data and overall process
Two data sets were used in testing performance. The
simulated data set consists of fifty randomly selected
helix-loop-helix (HLH) motifs from atomic structures in
PDB. The proteins extracted exhibit less than 10%
sequence identity. Each extracted HLH of the protein
structure was used to generate a 3D density map using
EMAN1.9 pdb2mrc [26]. The density maps were simu-
lated to 8Å resolution.
The real data set consists of 18 cases whose density

maps were downloaded from EMDB with resolution from
4.2Å to 6.8Å. Their EMDB entries are 5030 (6.4Å), 1733
(6.8Å), 5001 (4.2Å), 1740 (6.8Å) and 5168 (6.6Å). Each of
these density maps is aligned with their PDB structures at
download and provided multiple helix-loop-helix motif
samples for the experiment.
The length of a loop was measured along the skeleton

voxel points between (and including) the end points of the
two surrounding helices. An endpoint of a helix represents
an end of the central axis of the helix [11,12]. The helices
were detected using SSETracer, a simplified version of
SSELearner [16]. The skeleton was detected using a local
maximum clustering method, more details of which are
forthcoming in a separate paper. In order to test the accu-
racy of our algorithm, we visually inspected the detected
helices and included only those cases in which the helices
were roughly accurate. This was done to distinguish the
potential error in our loop length estimation from that of
helix detection, skeletonization, or production of the
CryoEM image itself.

Accuracy
The accuracy of the measurement was evaluated using
both the simulated data and the real data from the EMDB.

Table 1 summarizes the results for the simulated data.
The input to our method includes two pieces of informa-
tion: the detected helix (red sticks) end points and the ske-
leton voxels (red dots) (Figure 2B). Each measured length
along the skeleton was compared with the expected length
of the loop. The expected length was calculated as 3.8Å
×(n + 1), where n is the number of the amino acids on the
loop and 3.8Å is the average distance between two amino
acids.
The fifty tested cases were sorted by the length of the

loop, ranging from 1 to 10 amino acids. Almost all the 50
test cases appear to have the error within 0.5Å (column 6
of Table 1). As an example, the loop in 1DU0 (row 15 of
Table 1) has three amino acids and the expected length
of the loop is 15.2Å. The measured length of the loop
along the skeleton is 14.99Å. The relative error is 1.4% of
the expected loop length. The simplified curve (blue in
Figure 2B) detected by the algorithm appears to be close
to the skeleton points (red dots). Another example is
from 1MW8 (Figure 2 C, D, row 29 of Table 1) with six
amino acids on the loop. The error of the measurement
is 0.358Å in this case (column 6 of row 29, Table 1).
Note that the skeleton points branch into multiple direc-
tions (Figure 2D), yet the algorithm correctly measured
the length between the two ending points of the helices
by using Hausdorff measurements (see Algorithm). In
some cases, as in rows 18 and 28 in Table 1 the greedy
step in the Hausdorff computation breaks down and the
wrong pair of endpoints was used or the wrong skeleton
segment was measured.
The test using the experimentally derived density data

involves eighteen HLH motifs from density maps with 4-
7Å resolution from EMDB. Twelve of the eighteen cases
have measured error within 2Å, and six have error
between 2Å and 5Å. The real density maps from the
experiments are often more challenging with missing den-
sity and additional densities that do not align with the true
structure. The helices and skeletons detected from the real
maps are often less accurate than those from the simulated
density maps. Figure 3 shows an example of experimen-
tally derived data in EMDB 5168 (row 15 in Table 2). The
difference between the measured and the expected dis-
tance is 2.88Å, higher than a comparable case with a syn-
thetic density map used instead. In general, we saw an
increase in error using the real density images, due to
greater errors in helix detection and skeletonization
induced by the noise present.
The algorithm uses a simplification parameter Î that is

user defined. Î is the width of the vertex removal band
(refer to the algorithm for more details). In general, the
smaller the Î value, the less change in the simplified curve
compared to the initial path. In some cases, Î = 0 is the
best option, leaving the original path unchanged. In other
cases, a much larger value of Î was needed. In order to
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Table 1 Accuracy of the loop length estimation in the simulated data set.

No ID AA Expected Measured Diff RelErr DP Î

1 1ARO 1 7.6 7.4396 0.1604 2.1 1.00

2 1B0B 1 7.6 7.7384 0.1384 1.8 1.25

3 1BGP 1 7.6 7.6755 0.0755 1.0 1.30

4 1BQB 1 7.6 8.0995 0.4995 6.6 2.30

5 1GUX 1 7.6 7.8102 0.2102 2.8 6.00

6 1B43 2 11.4 11.4264 0.0264 0.2 0.45

7 1B89 2 11.4 11.8811 0.4811 4.2 2.55

8 1BD8 2 11.4 11.3578 0.0422 0.4 0.00

9 1BPY 2 11.4 11.4800 0.0800 0.7 2.25

10 1BR1 2 11.4 11.1461 0.2539 2.2 0.00

11 1FJL 3 15.2 15.4724 0.2724 1.8 1.35

12 1FK5 3 15.2 14.9523 0.2477 1.6 0.00

13 1FUR 3 15.2 15.2643 0.0643 0.4 6.00

14 1H0M 3 15.2 15.3601 0.1601 1.1 2.70

15 1DU0 3 15.2 14.9900 0.2100 1.4 0.60

16 1A87 4 19.0 18.8901 0.1099 0.6 0.95

17 1AIH 4 19.0 19.2057 0.2057 1.1 6.00

18 1AJ8 4 19.0 4.1231 14.8769 78.3 0.00

19 1BMT 4 19.0 19.2313 0.2313 1.2 5.55

20 1BOU 4 19.0 18.9609 0.0391 0.2 0.70

21 1D8L 5 22.8 23.1403 0.3403 1.5 0.60

22 1DI1 5 22.8 22.9243 0.1243 0.5 4.25

23 1DLC 5 22.8 22.5618 0.2382 1.0 0.00

24 1DNP 5 22.8 23.1044 0.3044 1.3 1.70

25 1DP7 5 22.8 22.7786 0.0214 0.1 2.10

26 1CQX 6 26.6 26.2583 0.3417 1.3 0.00

27 1CSH 6 26.6 26.9157 0.3157 1.2 1.85

28 1HM6 6 26.6 7.1461 18.8539 26.3 0.00

29 1MW8 6 26.6 26.2419 0.3581 1.3 0.00

30 1O6L 6 26.6 26.6271 0.0271 0.1 6.00

31 1DJX 7 30.4 30.7842 0.3842 1.3 3.85

32 1E5Q 7 30.4 30.5342 0.1342 0.4 4.65

33 1FFV 7 30.4 30.0703 0.3297 1.1 2.50

34 1H99 7 30.4 30.1897 0.2103 0.7 0.00

35 1IRX 7 30.4 30.7213 0.3213 1.1 6.00

36 1O6L 8 34.2 34.6762 0.4762 1.4 6.00

37 1QVR 8 34.2 34.2838 0.0838 0.2 0.60

38 1S0V 8 34.2 34.2505 0.0505 0.1 0.95

39 1TAU 8 34.2 34.3267 0.1267 0.4 0.70

40 1U09 8 34.2 34.1468 0.0532 0.2 2.05

41 1D6M 9 38.0 38.1574 0.1574 0.4 1.00

42 1FUR 9 38.0 38.3249 0.3249 0.9 2.85

43 1H32 9 38.0 38.1491 0.1491 0.4 0.70

44 1QPC 9 38.0 37.9111 0.0889 0.2 0.00

45 1SU8 9 38.0 37.9337 0.0663 0.2 0.65

46 1QRT 10 41.8 41.7369 0.0631 0.2 0.75

47 1R1H 10 41.8 41.3131 0.4869 1.2 0.00

48 1RJB 10 41.8 41.8528 0.0528 0.1 1.00

49 1XO0 10 41.8 41.8814 0.0814 0.2 1.05

50 2B63 10 41.8 41.4589 0.3411 0.8 4.60

ID: PDB ID from which the loop came; AA: the number of amino acids in the loop; Expected = (AA + 1) * 3.8Å; Measured: the estimated length of the loop along
the skeleton or its simplification; Diff: Measured - Expected; RelErr: Difference/Expected; DP Î is the value that produced the minimum Diff in the estimation.
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see the degree of simplification that produced the most
accurate results, we sampled Î’s range inside the interval
0[6] in increments of 0.05. The measured lengths w.r.t. Î
values appear to form a step function, and the value clo-
sest to the expected value (Figure 4 left) was marked. As
seen from this case, the measured length reduces as Î
increases stepwise.
Figure 4 (right) shows the distribution of the values of Î

for about 800 simulated cases that had less than 0.5Å dif-
ference. The vertical lines represent values of Î for cases
in Table 1. It appears that most of the Î values between
0.0 and 1.5 minimize the error in the measurement (Figure
4, right). However, we observed that we need larger Î
values for the experimentally derived data than for the
simulated density maps. This difference is likely to be

associated with the quality of skeletonization and helix
detection. For the simulated cases, Î between 0.0 and 1.5
is more likely to produce a good estimate after sufficient
preprocessing of the density maps. Multiple Î values
might be needed to sample the expected length when
working with the experimentally derived cryoEM data.

Conclusions
We have developed a new approach to estimate loop
length along the skeleton from a CryoEM density map.
Our tests, using both simulated and experimentally
derived images at medium resolution, show that it is possi-
ble for our proposed method to estimate fairly accurately
the loop length along the skeleton if the SSEs such as a-
helices and the skeleton are detected fairly accurately.

Figure 3 Detected simplified curve for a loop in CryoEM image (EMDB 5168). The color scheme is the same as that in Figure 2.

Figure 2 Loop length estimation from a simplified curve. The density map (gray), detected helices (red sticks), the true structure (cyan) are
shown for the HLH portion of the structure for 1DU0 (PDB Id) in (A, B) and 1MW8 in (C, D). The detected skeleton (yellow) is shown as surface
view in (A) and (C), as voxels (red dots) in (B) and (D). The simplified curve derived is shown in blue.
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Methods
The overall process to measure the loop length along the
skeleton consists of two tasks: preprocessing and length
calculation (Figure 5). The purpose of the preprocessing
is to derive the skeleton and the endpoints of the two
helices from the density map. Once such information is
obtained, our algorithm uses graphs and computational
geometric concepts to derive the simplified curve.

Preprocessing
Each case in Table 1 had a density map generated using
the HLH segment of the PDB structure and EMAN’s

pdb2mrc [26]. We applied a skeletonization method that
utilizes the local maximum points and clustering to
derive the skeleton points from the density map. The
HLH regions of cases in Table 2 were extracted from
entire density images downloaded from EMDB. We
used SSETracer, a secondary structure detection method
to detect helices from the density map. It is modified
from SSELearner [16] with improved speed. Since helix
detection is independent of skeletonization, it is neces-
sary to remove the skeleton voxels that belong to the
helix region in order to obtain the skeleton belonging to
the loop. We removed those skeleton voxels that are
within 2.3Å of the central axis of the helix. Note that a
helix is 2.3 - 2.5Å in radius [11,27]. After such proces-
sing, the skeleton voxels that presumably belong to the
loop are segmented from the rest of the skeleton voxels
and are subject for length calculation.

Algorithm
Local connectivity graphs
A local connectivity graph (LCG) represents a cluster of
skeleton voxels. We impose a constraint on the maximum
allowable edge length in a graph, possibly yielding multiple
disconnected graphs when all skeleton voxels are consid-
ered. For our tests, we normalized the distances between
the image’s voxels to unity, and chose a maximum edge
length l <2, producing individual connected subcompo-
nents if they can be clustered into distant groups, referred
to as LCGs in this paper.
Selecting connected components
Oftentimes, segmented or sparse density data yield multi-
ple LCGs. Also, in general, it is not known which helix
endpoints the loop actually lies between. We must then
determine the best LCG for each possible pair of helix
endpoints. For two helices, one with endpoints p and q

Table 2 Accuracy of the measured loop length for the
experimentally derived CryoEM data.

No ID AA Expected Measured Diff RelErr DP Î

1 5030 1 7.6 9.5128 1.9128 25.2 6.00

2 5138 1 7.6 8.2690 0.6690 8.8 6.00

3 5138 2 11.4 11.5490 0.1490 1.3 2.35

4 1733 3 15.2 14.3661 0.8339 5.5 4.05

5 1733 3 15.2 15.0790 0.1210 0.8 3.80

6 5001 3 15.2 11.1189 4.0811 26.8 0.00

7 5001 3 15.2 12.5132 2.6868 17.7 0.00

8 5001 3 15.2 15.6095 0.4095 2.7 2.35

9 5030 3 15.2 15.3747 0.1747 1.1 6.00

10 5030 3 15.2 14.6116 0.5884 3.9 1.75

11 5030 3 15.2 15.1321 0.0679 0.4 3.50

12 5138 3 15.2 14.2916 0.9084 6.0 5.30

13 1733 4 19.0 18.2477 0.7523 4.0 0.00

14 5001 4 19.0 19.1872 0.1872 1.0 6.00

15 5168 4 19.0 21.8790 2.8790 15.2 6.00

16 1740 5 22.8 26.4127 3.6127 15.8 6.00

17 1740 6 26.6 29.3993 2.7993 10.5 6.00

18 5168 6 26.6 22.4231 4.1769 15.7 0.00

See Table 1 for notations except ID: the EMDB ID in which the loop was tested.

Figure 4 The Douglas-Peucker Î step function. (Left) The Î step function for case 21 in Table 1 (PDB 1D8L), with the value of Î used for the best
estimate. (Right) Distribution of the best Î in the simulated data set of 800 loops. The vertical lines show the values that are listed in Table 1.
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and the other with r and s, there exists a set Z of four pos-
sible endpoint pairs: Z := {{p, r}, {p, s}, {q, r}, {q, s}}. For
each endpoint pair z Î Z, let the directed Hausdorff dis-
tance to an LCG [28] be defined as

h(z, b) = max min
zi∈z bj∈b

d(zi, bj), (1)

where z is the set of helix endpoints (comprised of vox-
els denoted zi) and b is an LCG (comprised of voxels
denoted bj) from the set B of all LCGs; d(zi, bj) is then the
Euclidean distance between a helix endpoint voxel and
LCG voxel. In the presence of multiple LCGs, we choose
the best LCG l̂z per endpoint pair z Î Z by taking the
minimum directed Hausdorff distance over all LCGs:

l̂z = min
b ∈ B

h(z, b). (2)

We can then use the voxels of l̂z to build our model of
the loop between the endpoints of z.
It should be noted here that the directed Hausdorff is

not commutative-in general, h(M, N) ≠ h(N, M)- and we
always chose M as a set (pair) of helix endpoints, and N as

an LCG. Figure 6 shows the configuration for case 30
(PDB 1O6L) from Table 1, where we want to find l̂z
among the set of LCGs B := {1, 2, 3, 4, 5, 6} to search for
the loop that may lie between the helix endpoint pair a.
After finding l̂z using equation (2), we repeat the proce-
dure for each other helix endpoint pair. We try connecting
the helix endpoints to their respective closest voxels in l̂z
with respect to the Euclidean distance. If either of the new
edges connecting p or r is longer than 5Å, we discard the
combination as an infeasible path.
Pathfinding
After finding the best LCG for a given possible helix end-
point pair, the next step is constructing a path that tra-
verses it in a way that will approximate the loop. We
simply performed a breadth-first search starting from one
of the helix endpoints we added, and reconstruct the path
that ends at the other one in the graph [29], with a helix
endpoint as the source. For a given HLH, we find four
such paths, one for each possible helix endpoint pair.
Path simplification
Ideally, the distance between two specific ends of two
helices should be measured along the skeleton connecting

Figure 5 The process of loop length estimation. (Left) preprocessing, and (right) the length estimation algorithm.

McKnight et al. BMC Structural Biology 2013, 13(Suppl 1):S5
http://www.biomedcentral.com/1472-6807/13/S1/S5

Page 7 of 10



the two ends by using our initial path. If we simply add the
length of the line segments along the initial path, there is a
danger of over estimation due to the potential zigzagging
induced from drawing a path along the edges of the cubic
lattice of the 3D image.
Douglas-Peucker line simplification [30,31] is the sys-

tematic removal of points that lie beyond some distance Î
from a line describing the general orientation of a piece-
wise linear curve (polyline) or one of its subsegments.
Consider the two-dimensional example in Figure 7. Part
(i) shows an initial polyline a...b. The algorithm is recur-
sive, and takes as parameters the tolerance Î (Figure 7 (ii))
and a multi-point segment of a polyline. At each recursive

iteration it finds an interior point of the current segment
which is the most distant from the straight line connecting
the end points of the segment, as in Figure 7 (ii) and 7(iii).
If all of the current segment’s vertices lie within the Î
band, the segment is replaced with a straight line segment
containing only its endpoints. Otherwise, the segment is
split at the most distant point and each subsegment is
handled recursively. In Figure 7 (iii), ac and cb are treated
in different recursive calls; e is the farthest point from cb,
and no points lie outside the epsilon band for ac. Overall,
the initial polyline a...b is simplified into polyline aceb,
which approximates the length of the loop between helix
endpoints.

Figure 6 Hausdorff distance comparison of the connected skeleton point groups. Two detected helices (solid red lines), with a pair z of helix
endpoints (connected by the red dashed line) and several LCGs (gray ellipses) from PDB 1O6L. In this case, LCG 1 is closest to z in terms of directed
Hausdorff distance.
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List of abbreviations
CryoEM: electron cryomicroscopy; SSE: secondary structure element - either
α-helices or β-sheets; EMDB: Electron Microscopy Data Bank; PDB: Protein
Data Bank; HLH: helix-loop-helix motif found in protein structures; LCG: local
connectivity graph - a connected graph of skeleton voxels with a maximum
allowed edge length.
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