1,306 research outputs found

    Symmetry and resonance in periodic FPU chains

    Get PDF
    The symmetry and resonance properties of the Fermi Pasta Ulam chain with periodic boundary conditions are exploited to construct a near-identity transformation bringing this Hamiltonian system into a particularly simple form. This `Birkhoff-Gustavson normal form' retains the symmetries of the original system and we show that in most cases this allows us to view the periodic FPU Hamiltonian as a perturbation of a nondegenerate Liouville integrable Hamiltonian. According to the KAM theorem this proves the existence of many invariant tori on which motion is quasiperiodic. Experiments confirm this qualitative behaviour. We note that one can not expect it in lower-order resonant Hamiltonian systems. So the FPU chain is an exception and its special features are caused by a combination of special resonances and symmetries.Comment: 21 page

    Open problems, questions, and challenges in finite-dimensional integrable systems

    Get PDF
    The paper surveys open problems and questions related to different aspects of integrable systems with finitely many degrees of freedom. Many of the open problems were suggested by the participants of the conference “Finite-dimensional Integrable Systems, FDIS 2017” held at CRM, Barcelona in July 2017.Postprint (updated version

    Gravitational descendants in symplectic field theory

    Full text link
    It was pointed out by Y. Eliashberg in his ICM 2006 plenary talk that the rich algebraic formalism of symplectic field theory leads to a natural appearance of quantum and classical integrable systems, at least in the case when the contact manifold is the prequantization space of a symplectic manifold. In this paper we generalize the definition of gravitational descendants in SFT from circle bundles in the Morse-Bott case to general contact manifolds. After we have shown that for the basic examples of holomorphic curves in SFT, that is, branched covers of cylinders over closed Reeb orbits, the gravitational descendants have a geometric interpretation in terms of branching conditions, we compute the corresponding sequences of Poisson-commuting functions when the contact manifold is the unit cotangent bundle of a Riemannian manifold.Comment: 44 pages, no figure

    Asymptotics of action variables near semi-toric singularities

    Full text link
    The presence of focus-focus singularities in semi-toric integrables Hamiltonian systems is one of the reasons why there cannot exist global Action-Angle coordinates on such systems. At focus-focus critical points, the Liouville-Arnold-Mineur theorem does not apply. In particular, the affine structure of the image of the moment map around has non-trivial monodromy. In this article, we establish that the singular behaviour and the multi-valuedness of the Action integrals is given by a complex logarithm. This extends a previous result by Vu Ngoc to any dimension. We also calculate the monodromy matrix for these systems.Comment: 24 pages, 2 figures, 1 table; modifications in the introduction, accepted for publicatio

    Duality in Integrable Systems and Gauge Theories

    Full text link
    We discuss various dualities, relating integrable systems and show that these dualities are explained in the framework of Hamiltonian and Poisson reductions. The dualities we study shed some light on the known integrable systems as well as allow to construct new ones, double elliptic among them. We also discuss applications to the (supersymmetric) gauge theories in various dimensions.Comment: harvmac 45 pp.; v4. minor corrections, to appear in JHE

    Poisson vertex algebras in the theory of Hamiltonian equations

    Full text link
    We lay down the foundations of the theory of Poisson vertex algebras aimed at its applications to integrability of Hamiltonian partial differential equations. Such an equation is called integrable if it can be included in an infinite hierarchy of compatible Hamiltonian equations, which admit an infinite sequence of linearly independent integrals of motion in involution. The construction of a hierarchy and its integrals of motion is achieved by making use of the so called Lenard scheme. We find simple conditions which guarantee that the scheme produces an infinite sequence of closed 1-forms \omega_j, j in Z_+, of the variational complex \Omega. If these forms are exact, i.e. \omega_j are variational derivatives of some local functionals \int h_j, then the latter are integrals of motion in involution of the hierarchy formed by the corresponding Hamiltonian vector fields. We show that the complex \Omega is exact, provided that the algebra of functions V is "normal"; in particular, for arbitrary V, any closed form in \Omega becomes exact if we add to V a finite number of antiderivatives. We demonstrate on the examples of KdV, HD and CNW hierarchies how the Lenard scheme works. We also discover a new integrable hierarchy, which we call the CNW hierarchy of HD type. Developing the ideas of Dorfman, we extend the Lenard scheme to arbitrary Dirac structures, and demonstrate its applicability on the examples of the NLS, pKdV and KN hierarchies.Comment: 95 page

    Semiclassical Quantisation of Finite-Gap Strings

    Full text link
    We perform a first principle semiclassical quantisation of the general finite-gap solution to the equations of a string moving on R x S^3. The derivation is only formal as we do not regularise divergent sums over stability angles. Moreover, with regards to the AdS/CFT correspondence the result is incomplete as the fluctuations orthogonal to this subspace in AdS_5 x S^5 are not taken into account. Nevertheless, the calculation serves the purpose of understanding how the moduli of the algebraic curve gets quantised semiclassically, purely from the point of view of finite-gap integration and with no input from the gauge theory side. Our result is expressed in a very compact and simple formula which encodes the infinite sum over stability angles in a succinct way and reproduces exactly what one expects from knowledge of the dual gauge theory. Namely, at tree level the filling fractions of the algebraic curve get quantised in large integer multiples of hbar = 1/lambda^{1/2}. At 1-loop order the filling fractions receive Maslov index corrections of hbar/2 and all the singular points of the spectral curve become filled with small half-integer multiples of hbar. For the subsector in question this is in agreement with the previously obtained results for the semiclassical energy spectrum of the string using the method proposed in hep-th/0703191. Along the way we derive the complete hierarchy of commuting flows for the string in the R x S^3 subsector. Moreover, we also derive a very general and simple formula for the stability angles around a generic finite-gap solution. We also stress the issue of quantum operator orderings since this problem already crops up at 1-loop in the form of the subprincipal symbol.Comment: 53 pages, 22 figures; some significant typos corrected, references adde
    • …
    corecore