116,567 research outputs found

    Entanglement purification for Quantum Computation

    Get PDF
    We show that thresholds for fault-tolerant quantum computation are solely determined by the quality of single-system operations if one allows for d-dimensional systems with 8≤d≤328 \leq d \leq 32. Each system serves to store one logical qubit and additional auxiliary dimensions are used to create and purify entanglement between systems. Physical, possibly probabilistic two-system operations with error rates up to 2/3 are still tolerable to realize deterministic high quality two-qubit gates on the logical qubits. The achievable error rate is of the same order of magnitude as of the single-system operations. We investigate possible implementations of our scheme for several physical set-ups.Comment: 4 pages, 1 figure; V2: references adde

    Extended two-stage adaptive designswith three target responses forphase II clinical trials

    Get PDF
    We develop a nature-inspired stochastic population-based algorithm and call it discrete particle swarm optimization tofind extended two-stage adaptive optimal designs that allow three target response rates for the drug in a phase II trial.Our proposed designs include the celebrated Simon’s two-stage design and its extension that allows two target responserates to be specified for the drug. We show that discrete particle swarm optimization not only frequently outperformsgreedy algorithms, which are currently used to find such designs when there are only a few parameters; it is also capableof solving design problems posed here with more parameters that greedy algorithms cannot solve. In stage 1 of ourproposed designs, futility is quickly assessed and if there are sufficient responders to move to stage 2, one tests one ofthe three target response rates of the drug, subject to various user-specified testing error rates. Our designs aretherefore more flexible and interestingly, do not necessarily require larger expected sample size requirements thantwo-stage adaptive designs. Using a real adaptive trial for melanoma patients, we show our proposed design requires onehalf fewer subjects than the implemented design in the study

    Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing

    Full text link
    Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring a large integration step to impute over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multitype branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for hematopoiesis and transposable element evolution.Comment: 18 pages, 4 figures, 2 table
    • …
    corecore