236 research outputs found

    Physical constraints on hypercomputation

    Get PDF
    Many attempts to transcend the fundamental limitations to computability implied by the Halting Problem for Turing Machines depend on the use of forms of hypercomputation that draw on notions of infinite or continuous, as opposed to bounded or discrete, computation. Thus, such schemes may include the deployment of actualised rather than potential infinities of physical resources, or of physical representations of real numbers to arbitrary precision. Here, we argue that such bases for hypercomputation are not materially realisable and so cannot constitute new forms of effective calculability. A slightly amended version of this has now appeared in the journal Theoretical Computer Science A

    Zeno machines and hypercomputation

    Get PDF
    This paper reviews the Church-Turing Thesis (or rather, theses) with reference to their origin and application and considers some models of "hypercomputation", concentrating on perhaps the most straight-forward option: Zeno machines (Turing machines with accelerating clock). The halting problem is briefly discussed in a general context and the suggestion that it is an inevitable companion of any reasonable computational model is emphasised. It is hinted that claims to have "broken the Turing barrier" could be toned down and that the important and well-founded role of Turing computability in the mathematical sciences stands unchallenged.Comment: 11 pages. First submitted in December 2004, substantially revised in July and in November 2005. To appear in Theoretical Computer Scienc

    Some Thoughts on Hypercomputation

    Full text link
    Hypercomputation is a relatively new branch of computer science that emerged from the idea that the Church--Turing Thesis, which is supposed to describe what is computable and what is noncomputable, cannot possible be true. Because of its apparent validity, the Church--Turing Thesis has been used to investigate the possible limits of intelligence of any imaginable life form, and, consequently, the limits of information processing, since living beings are, among others, information processors. However, in the light of hypercomputation, which seems to be feasibly in our universe, one cannot impose arbitrary limits to what intelligence can achieve unless there are specific physical laws that prohibit the realization of something. In addition, hypercomputation allows us to ponder about aspects of communication between intelligent beings that have not been considered befor

    Quantum hypercomputation based on the dynamical algebra su(1,1)

    Full text link
    An adaptation of Kieu's hypercomputational quantum algorithm (KHQA) is presented. The method that was used was to replace the Weyl-Heisenberg algebra by other dynamical algebra of low dimension that admits infinite-dimensional irreducible representations with naturally defined generalized coherent states. We have selected the Lie algebra su(1,1)\mathfrak{su}(1,1), due to that this algebra posses the necessary characteristics for to realize the hypercomputation and also due to that such algebra has been identified as the dynamical algebra associated to many relatively simple quantum systems. In addition to an algebraic adaptation of KHQA over the algebra su(1,1)\mathfrak{su}(1,1), we presented an adaptations of KHQA over some concrete physical referents: the infinite square well, the infinite cylindrical well, the perturbed infinite cylindrical well, the P{\"o}sch-Teller potentials, the Holstein-Primakoff system, and the Laguerre oscillator. We conclude that it is possible to have many physical systems within condensed matter and quantum optics on which it is possible to consider an implementation of KHQA.Comment: 25 pages, 1 figure, conclusions rewritten, typing and language errors corrected and latex format changed minor changes elsewhere and
    • …
    corecore