2,543 research outputs found

    Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms

    Full text link
    Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events that can be non-exponentially distributed. Within parametric ACTMCs, the parameters of alarm-event distributions are not given explicitly and can be subject of parameter synthesis. An algorithm solving the ε\varepsilon-optimal parameter synthesis problem for parametric ACTMCs with long-run average optimization objectives is presented. Our approach is based on reduction of the problem to finding long-run average optimal strategies in semi-Markov decision processes (semi-MDPs) and sufficient discretization of parameter (i.e., action) space. Since the set of actions in the discretized semi-MDP can be very large, a straightforward approach based on explicit action-space construction fails to solve even simple instances of the problem. The presented algorithm uses an enhanced policy iteration on symbolic representations of the action space. The soundness of the algorithm is established for parametric ACTMCs with alarm-event distributions satisfying four mild assumptions that are shown to hold for uniform, Dirac and Weibull distributions in particular, but are satisfied for many other distributions as well. An experimental implementation shows that the symbolic technique substantially improves the efficiency of the synthesis algorithm and allows to solve instances of realistic size.Comment: This article is a full version of a paper accepted to the Conference on Quantitative Evaluation of SysTems (QEST) 201

    Approximations of countably-infinite linear programs over bounded measure spaces

    Get PDF
    We study a class of countably-infinite-dimensional linear programs (CILPs) whose feasible sets are bounded subsets of appropriately defined weighted spaces of measures. We show how to approximate the optimal value, optimal points, and minimal points of these CILPs by solving finite-dimensional linear programs. The errors of our approximations converge to zero as the size of the finite-dimensional program approaches that of the original problem and are easy to bound in practice. We discuss the use of our methods in the computation of the stationary distributions, occupation measures, and exit distributions of Markov~chains

    Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions

    Full text link
    The goal of this work is to formally abstract a Markov process evolving in discrete time over a general state space as a finite-state Markov chain, with the objective of precisely approximating its state probability distribution in time, which allows for its approximate, faster computation by that of the Markov chain. The approach is based on formal abstractions and employs an arbitrary finite partition of the state space of the Markov process, and the computation of average transition probabilities between partition sets. The abstraction technique is formal, in that it comes with guarantees on the introduced approximation that depend on the diameters of the partitions: as such, they can be tuned at will. Further in the case of Markov processes with unbounded state spaces, a procedure for precisely truncating the state space within a compact set is provided, together with an error bound that depends on the asymptotic properties of the transition kernel of the original process. The overall abstraction algorithm, which practically hinges on piecewise constant approximations of the density functions of the Markov process, is extended to higher-order function approximations: these can lead to improved error bounds and associated lower computational requirements. The approach is practically tested to compute probabilistic invariance of the Markov process under study, and is compared to a known alternative approach from the literature.Comment: 29 pages, Journal of Logical Methods in Computer Scienc

    On Universal Prediction and Bayesian Confirmation

    Get PDF
    The Bayesian framework is a well-studied and successful framework for inductive reasoning, which includes hypothesis testing and confirmation, parameter estimation, sequence prediction, classification, and regression. But standard statistical guidelines for choosing the model class and prior are not always available or fail, in particular in complex situations. Solomonoff completed the Bayesian framework by providing a rigorous, unique, formal, and universal choice for the model class and the prior. We discuss in breadth how and in which sense universal (non-i.i.d.) sequence prediction solves various (philosophical) problems of traditional Bayesian sequence prediction. We show that Solomonoff's model possesses many desirable properties: Strong total and weak instantaneous bounds, and in contrast to most classical continuous prior densities has no zero p(oste)rior problem, i.e. can confirm universal hypotheses, is reparametrization and regrouping invariant, and avoids the old-evidence and updating problem. It even performs well (actually better) in non-computable environments.Comment: 24 page

    Solving Factored MDPs with Hybrid State and Action Variables

    Full text link
    Efficient representations and solutions for large decision problems with continuous and discrete variables are among the most important challenges faced by the designers of automated decision support systems. In this paper, we describe a novel hybrid factored Markov decision process (MDP) model that allows for a compact representation of these problems, and a new hybrid approximate linear programming (HALP) framework that permits their efficient solutions. The central idea of HALP is to approximate the optimal value function by a linear combination of basis functions and optimize its weights by linear programming. We analyze both theoretical and computational aspects of this approach, and demonstrate its scale-up potential on several hybrid optimization problems

    Sampling-based Approximations with Quantitative Performance for the Probabilistic Reach-Avoid Problem over General Markov Processes

    Get PDF
    This article deals with stochastic processes endowed with the Markov (memoryless) property and evolving over general (uncountable) state spaces. The models further depend on a non-deterministic quantity in the form of a control input, which can be selected to affect the probabilistic dynamics. We address the computation of maximal reach-avoid specifications, together with the synthesis of the corresponding optimal controllers. The reach-avoid specification deals with assessing the likelihood that any finite-horizon trajectory of the model enters a given goal set, while avoiding a given set of undesired states. This article newly provides an approximate computational scheme for the reach-avoid specification based on the Fitted Value Iteration algorithm, which hinges on random sample extractions, and gives a-priori computable formal probabilistic bounds on the error made by the approximation algorithm: as such, the output of the numerical scheme is quantitatively assessed and thus meaningful for safety-critical applications. Furthermore, we provide tighter probabilistic error bounds that are sample-based. The overall computational scheme is put in relationship with alternative approximation algorithms in the literature, and finally its performance is practically assessed over a benchmark case study
    corecore