201 research outputs found

    Distributive semilattices as retracts of ultraboolean ones; functorial inverses without adjunction

    Get PDF
    A (v,0)-semilattice is ultraboolean, if it is a directed union of finite Boolean (v,0)-semilattices. We prove that every distributive (v,0)-semilattice is a retract of some ultraboolean (v,0)-semilattices. This is established by proving that every finite distributive (v,0)-semilattice is a retract of some finite Boolean (v,0)-semilattice, and this in a functorial way. This result is, in turn, obtained as a particular case of a category-theoretical result that gives sufficient conditions, for a functor Pi Pi, to admit a right inverse. The particular functor Pi Pi used for the abovementioned result about ultraboolean semilattices has neither a right nor a left adjoint

    A Categorical View on Algebraic Lattices in Formal Concept Analysis

    Full text link
    Formal concept analysis has grown from a new branch of the mathematical field of lattice theory to a widely recognized tool in Computer Science and elsewhere. In order to fully benefit from this theory, we believe that it can be enriched with notions such as approximation by computation or representability. The latter are commonly studied in denotational semantics and domain theory and captured most prominently by the notion of algebraicity, e.g. of lattices. In this paper, we explore the notion of algebraicity in formal concept analysis from a category-theoretical perspective. To this end, we build on the the notion of approximable concept with a suitable category and show that the latter is equivalent to the category of algebraic lattices. At the same time, the paper provides a relatively comprehensive account of the representation theory of algebraic lattices in the framework of Stone duality, relating well-known structures such as Scott information systems with further formalisms from logic, topology, domains and lattice theory.Comment: 36 page

    On the commutativity of the powerspace constructions

    Full text link
    We investigate powerspace constructions on topological spaces, with a particular focus on the category of quasi-Polish spaces. We show that the upper and lower powerspaces commute on all quasi-Polish spaces, and show more generally that this commutativity is equivalent to the topological property of consonance. We then investigate powerspace constructions on the open set lattices of quasi-Polish spaces, and provide a complete characterization of how the upper and lower powerspaces distribute over the open set lattice construction
    corecore