1,562 research outputs found

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Photonics-enabled sub-Nyquist radio frequency sensing based on temporal channelization and compressive sensing

    Get PDF
    A novel approach to sensing broadband radio frequency (RF) spectrum beyond the Nyquist limit based on photonic temporal channelization and compressive sensing is proposed. A spectrally-sparse RF signal with unknown frequencies is modulated onto a highly chirped optical pulse. An optical channelizer slices the modulated pulse spectrum, which is equivalent to temporally sampling the RF waveform thanks to the dispersion-induced wavelength-to-time mapping. This serial-to-parallel conversion avoids the use of a high-speed detector and digitizer. Furthermore, compressive sensing with optical random demodulation is achieved using a spatial light modulator, enabling the system to capture the wideband multi-tone RF signal with a sampling rate far lower than the Nyquist rate. It is demonstrated that the temporal channelization system with a channel spacing of 20 GHz achieves RF spectrum sensing with a high resolution of 196 MHz. With an equivalent sampling rate of only 25 GHz, a 50-GHz broadband two-tone RF signal can be captured and reconstructed by the system thanks to compressive sensing with a compression ratio of 4

    Feedback Acquisition and Reconstruction of Spectrum-Sparse Signals by Predictive Level Comparisons

    Full text link
    In this letter, we propose a sparsity promoting feedback acquisition and reconstruction scheme for sensing, encoding and subsequent reconstruction of spectrally sparse signals. In the proposed scheme, the spectral components are estimated utilizing a sparsity-promoting, sliding-window algorithm in a feedback loop. Utilizing the estimated spectral components, a level signal is predicted and sign measurements of the prediction error are acquired. The sparsity promoting algorithm can then estimate the spectral components iteratively from the sign measurements. Unlike many batch-based Compressive Sensing (CS) algorithms, our proposed algorithm gradually estimates and follows slow changes in the sparse components utilizing a sliding-window technique. We also consider the scenario in which possible flipping errors in the sign bits propagate along iterations (due to the feedback loop) during reconstruction. We propose an iterative error correction algorithm to cope with this error propagation phenomenon considering a binary-sparse occurrence model on the error sequence. Simulation results show effective performance of the proposed scheme in comparison with the literature

    Quantum sensing with arbitrary frequency resolution

    Full text link
    Quantum sensing takes advantage of well controlled quantum systems for performing measurements with high sensitivity and precision. We have implemented a concept for quantum sensing with arbitrary frequency resolution, independent of the qubit probe and limited only by the stability of an external synchronization clock. Our concept makes use of quantum lock-in detection to continuously probe a signal of interest. Using the electronic spin of a single nitrogen vacancy center in diamond, we demonstrate detection of oscillating magnetic fields with a frequency resolution of 70 uHz over a MHz bandwidth. The continuous sampling further guarantees an excellent sensitivity, reaching a signal-to-noise ratio in excess of 10,000:1 for a 170 nT test signal measured during a one-hour interval. Our technique has applications in magnetic resonance spectroscopy, quantum simulation, and sensitive signal detection.Comment: Manuscript resubmitted to Science. Includes Supplementary Material

    Xampling: Signal Acquisition and Processing in Union of Subspaces

    Full text link
    We introduce Xampling, a unified framework for signal acquisition and processing of signals in a union of subspaces. The main functions of this framework are two. Analog compression that narrows down the input bandwidth prior to sampling with commercial devices. A nonlinear algorithm then detects the input subspace prior to conventional signal processing. A representative union model of spectrally-sparse signals serves as a test-case to study these Xampling functions. We adopt three metrics for the choice of analog compression: robustness to model mismatch, required hardware accuracy and software complexities. We conduct a comprehensive comparison between two sub-Nyquist acquisition strategies for spectrally-sparse signals, the random demodulator and the modulated wideband converter (MWC), in terms of these metrics and draw operative conclusions regarding the choice of analog compression. We then address lowrate signal processing and develop an algorithm for that purpose that enables convenient signal processing at sub-Nyquist rates from samples obtained by the MWC. We conclude by showing that a variety of other sampling approaches for different union classes fit nicely into our framework.Comment: 16 pages, 9 figures, submitted to IEEE for possible publicatio
    • …
    corecore