1,615 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Cooperative sensing and compression in vehicular sensor networks for urban monitoring

    Get PDF
    A Vehicular Sensor Network (VSN) may be used for urban environment surveillance utilizing vehicle-based sensors to provide an affordable yet good coverage for the urban area. The sensors in VSN enjoy the vehicle's steady power supply and strong computational capacity not available in traditional Wireless Sensor Network (WSN). However, the mobility of the vehicles results in highly dynamic and unpredictable network topology, leading to packet losses and distorted surveillance results. To resolve these problems, we propose a cooperative data sensing and compression approach with zero inter-sensor collaboration overhead based on sparse random projections. The algorithm provides excellent reconstruction accuracy for the sensed field, and by taking advantage of the spatial correlation of the data, enjoys much smaller communication traffic load compared to traditional sampling algorithms in wireless sensor networks. Real urban environment data sets are used in the experiments to test the reconstruction accuracy and energy efficiency under different vehicular mobility models. The results show that our approach is superior to the conventional sampling and interpolation strategy which propagates data in an uncompressed form, with 4-5dB gain in reconstruction quality and 21-55% savings in communication cost for the same sampling times. ©2010 IEEE.published_or_final_versionThe IEEE International Conference on Communications (ICC) 2010, Cape Town, South Africa, 23-27 May 2010. In Proceedings of the IEEE ICC, 2010, p. 1-

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment
    • …
    corecore