198 research outputs found

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain

    Hybrid Driven Learning for Channel Estimation in Intelligent Reflecting Surface Aided Millimeter Wave Communications

    Full text link
    Intelligent reflecting surfaces (IRS) have been proposed in millimeter wave (mmWave) and terahertz (THz) systems to achieve both coverage and capacity enhancement, where the design of hybrid precoders, combiners, and the IRS typically relies on channel state information. In this paper, we address the problem of uplink wideband channel estimation for IRS aided multiuser multiple-input single-output (MISO) systems with hybrid architectures. Combining the structure of model driven and data driven deep learning approaches, a hybrid driven learning architecture is devised for joint estimation and learning the properties of the channels. For a passive IRS aided system, we propose a residual learned approximate message passing as a model driven network. A denoising and attention network in the data driven network is used to jointly learn spatial and frequency features. Furthermore, we design a flexible hybrid driven network in a hybrid passive and active IRS aided system. Specifically, the depthwise separable convolution is applied to the data driven network, leading to less network complexity and fewer parameters at the IRS side. Numerical results indicate that in both systems, the proposed hybrid driven channel estimation methods significantly outperform existing deep learning-based schemes and effectively reduce the pilot overhead by about 60% in IRS aided systems.Comment: 30 pages, 8 figures, submitted to IEEE transactions on wireless communications on December 13, 202

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components
    • …
    corecore