442,929 research outputs found
Failure analysis of CFRP laminates subjected to Compression After Impact: FE simulation using discrete interface elements
This paper presents a model for the numerical simulation of impact damage, permanent indentation and compression after impact (CAI) in CFRP laminates. The same model is used for the formation of damage developing during both low-velocity / low-energy impact tests and CAI tests. The different impact and CAI elementary damage types are taken into account, i.e. matrix cracking, fiber failure and interface delamination. Experimental tests and model results are compared, and this comparison is used to highlight the laminate failure scenario during residual compression tests. Finally, the impact energy effect on the residual strength is evaluated and compared to experimental results
Hydrostatic compression on polypropylene foam
Models currently used to simulate the impact behaviour of polymeric foam at high strain rates use data from mechanical tests. Uniaxial compression is the most common mechanical test used, but the results from this test alone are insufficient to characterise the foam response to three-dimensional stress states. A new experimental apparatus for the study of the foam behaviour under a state of hydrostatic stress is presented. A flywheel was modified to carry out compression tests at high strain rates, and a hydrostatic chamber designed to obtain the variation of stress with volumetric strain, as a function of density and deformation rate. High speed images of the sample deformation under pressure were analysed by image processing. Hydrostatic compression tests were carried out, on polypropylene foams, both quasi statically and at high strain rates. The stress–volumetric strain response of the foam was determined for samples of foam of density from 35 to 120 kg/m3, loaded at two strain rates. The foam response under hydrostatic compression shows a non-linear elastic stage, followed by a plastic plateau and densification. These were characterised by a compressibility modulus (the slope of the initial stage), a yield stress and a tangent modulus. The foam was transversely isotropic under hydrostatic compression
Mechanical behavior of entangled fibers and entangled cross-linked fibers during compression
Entangled fibrous materials have been manufactured from different fibers: metallic fibers, glass fibers, and carbon fibers. Specimens have been produced with and without cross links between fibers. Cross-links have been achieved using epoxy spraying. The scope of this article is to analyze the mechanical behavior of these materials and to compare it with available models. The first part of this article deals with entangled fibrous materials without crosslink between fibers. Compression tests are detailed and test reproducibility is checked. In the second part, compression tests were performed on materials manufactured with cross-linked fibers. The specific mechanical behavior obtained is discussed
Perceptual Quality Study on Deep Learning based Image Compression
Recently deep learning based image compression has made rapid advances with
promising results based on objective quality metrics. However, a rigorous
subjective quality evaluation on such compression schemes have rarely been
reported. This paper aims at perceptual quality studies on learned compression.
First, we build a general learned compression approach, and optimize the model.
In total six compression algorithms are considered for this study. Then, we
perform subjective quality tests in a controlled environment using
high-resolution images. Results demonstrate learned compression optimized by
MS-SSIM yields competitive results that approach the efficiency of
state-of-the-art compression. The results obtained can provide a useful
benchmark for future developments in learned image compression.Comment: Accepted as a conference contribution to IEEE International
Conference on Image Processing (ICIP) 201
Compression tests of open-face truss-core sandwich panels
Compression tests of open-face truss core sandwich panel
Neutron emissions in brittle rocks during compression tests: Monotonic vs cyclic loading
Neutron emission measurements, by means of 3He devices and neutron bubble detectors, were performed during two different kinds of compression tests on brittle rocks: (i) under displacement control, and (ii) under cyclic loading. The material used for the tests was Green Luserna Granite, with different specimen sizes and shapes, and consequently with different brittleness numbers. Since the analyzed material contains iron, our conjecture is that piezonuclear reactions involving fission of iron into aluminum, or into magnesium and silicon, should have occurred during compression damage and failure. Some studies have been already conducted on the different forms of energy emitted during the failure of brittle materials. They are based on the signals captured by acoustic emission measurement systems, or on the detection of electromagnetic charge. On the other hand, piezonuclear neutron emissions from very brittle rock specimens in compression have been discovered only very recently. In this paper, the authors analyse this phenomenon from an experimental point of vie
Lossless Astronomical Image Compression and the Effects of Noise
We compare a variety of lossless image compression methods on a large sample
of astronomical images and show how the compression ratios and speeds of the
algorithms are affected by the amount of noise in the images. In the ideal case
where the image pixel values have a random Gaussian distribution, the
equivalent number of uncompressible noise bits per pixel is given by Nbits
=log2(sigma * sqrt(12)) and the lossless compression ratio is given by R =
BITPIX / Nbits + K where BITPIX is the bit length of the pixel values and K is
a measure of the efficiency of the compression algorithm.
We perform image compression tests on a large sample of integer astronomical
CCD images using the GZIP compression program and using a newer FITS
tiled-image compression method that currently supports 4 compression
algorithms: Rice, Hcompress, PLIO, and GZIP. Overall, the Rice compression
algorithm strikes the best balance of compression and computational efficiency;
it is 2--3 times faster and produces about 1.4 times greater compression than
GZIP. The Rice algorithm produces 75%--90% (depending on the amount of noise in
the image) as much compression as an ideal algorithm with K = 0.
The image compression and uncompression utility programs used in this study
(called fpack and funpack) are publicly available from the HEASARC web site. A
simple command-line interface may be used to compress or uncompress any FITS
image file.Comment: 20 pages, 9 figures, to be published in PAS
- …
