3,188 research outputs found

    Compression of Probabilistic XML documents

    Get PDF
    Probabilistic XML (PXML) files resulting from data integration can become extremely large, which is undesired. For XML there are several techniques available to compress the document and since probabilistic XML is in fact (a special form of) XML, it might benefit from these methods even more. In this research we search for compression mechanisms that are available for XML and implement one of them to customize it with respect to the properties of probabilistic XML. Experiments show that there is no significant improvement for combinations of traditional mechanisms with techniques that are specially designed for probabilistic XML

    Deep Tree Transductions - A Short Survey

    Full text link
    The paper surveys recent extensions of the Long-Short Term Memory networks to handle tree structures from the perspective of learning non-trivial forms of isomorph structured transductions. It provides a discussion of modern TreeLSTM models, showing the effect of the bias induced by the direction of tree processing. An empirical analysis is performed on real-world benchmarks, highlighting how there is no single model adequate to effectively approach all transduction problems.Comment: To appear in the Proceedings of the 2019 INNS Big Data and Deep Learning (INNSBDDL 2019). arXiv admin note: text overlap with arXiv:1809.0909

    TopSig: Topology Preserving Document Signatures

    Get PDF
    Performance comparisons between File Signatures and Inverted Files for text retrieval have previously shown several significant shortcomings of file signatures relative to inverted files. The inverted file approach underpins most state-of-the-art search engine algorithms, such as Language and Probabilistic models. It has been widely accepted that traditional file signatures are inferior alternatives to inverted files. This paper describes TopSig, a new approach to the construction of file signatures. Many advances in semantic hashing and dimensionality reduction have been made in recent times, but these were not so far linked to general purpose, signature file based, search engines. This paper introduces a different signature file approach that builds upon and extends these recent advances. We are able to demonstrate significant improvements in the performance of signature file based indexing and retrieval, performance that is comparable to that of state of the art inverted file based systems, including Language models and BM25. These findings suggest that file signatures offer a viable alternative to inverted files in suitable settings and from the theoretical perspective it positions the file signatures model in the class of Vector Space retrieval models.Comment: 12 pages, 8 figures, CIKM 201

    On Region Algebras, XML Databases, and Information Retrieval

    Get PDF
    This paper describes some new ideas on developing a logical algebra for databases that manage textual data and support information retrieval functionality. We describe a first prototype of such a system

    Queensland University of Technology at TREC 2005

    Get PDF
    The Information Retrieval and Web Intelligence (IR-WI) research group is a research team at the Faculty of Information Technology, QUT, Brisbane, Australia. The IR-WI group participated in the Terabyte and Robust track at TREC 2005, both for the first time. For the Robust track we applied our existing information retrieval system that was originally designed for use with structured (XML) retrieval to the domain of document retrieval. For the Terabyte track we experimented with an open source IR system, Zettair and performed two types of experiments. First, we compared Zettair’s performance on both a high-powered supercomputer and a distributed system across seven midrange personal computers. Second, we compared Zettair’s performance when a standard TREC title is used, compared with a natural language query, and a query expanded with synonyms. We compare the systems both in terms of efficiency and retrieval performance. Our results indicate that the distributed system is faster than the supercomputer, while slightly decreasing retrieval performance, and that natural language queries also slightly decrease retrieval performance, while our query expansion technique significantly decreased performance

    Rhetorical relations for information retrieval

    Full text link
    Typically, every part in most coherent text has some plausible reason for its presence, some function that it performs to the overall semantics of the text. Rhetorical relations, e.g. contrast, cause, explanation, describe how the parts of a text are linked to each other. Knowledge about this socalled discourse structure has been applied successfully to several natural language processing tasks. This work studies the use of rhetorical relations for Information Retrieval (IR): Is there a correlation between certain rhetorical relations and retrieval performance? Can knowledge about a document's rhetorical relations be useful to IR? We present a language model modification that considers rhetorical relations when estimating the relevance of a document to a query. Empirical evaluation of different versions of our model on TREC settings shows that certain rhetorical relations can benefit retrieval effectiveness notably (> 10% in mean average precision over a state-of-the-art baseline)

    The Best Trail Algorithm for Assisted Navigation of Web Sites

    Full text link
    We present an algorithm called the Best Trail Algorithm, which helps solve the hypertext navigation problem by automating the construction of memex-like trails through the corpus. The algorithm performs a probabilistic best-first expansion of a set of navigation trees to find relevant and compact trails. We describe the implementation of the algorithm, scoring methods for trails, filtering algorithms and a new metric called \emph{potential gain} which measures the potential of a page for future navigation opportunities.Comment: 11 pages, 11 figure

    Managing uncertainty of XML schema matching

    Get PDF
    Despite of advances in machine learning technologies, a schema matching result between two database schemas (e.g., those derived from COMA++) is likely to be imprecise. In particular, numerous instances of "possible mappings" between the schemas may be derived from the matching result. In this paper, we study the problem of managing possible mappings between two heterogeneous XML schemas. We observe that for XML schemas, their possible mappings have a high degree of overlap. We hence propose a novel data structure, called the block tree, to capture the commonalities among possible mappings. The block tree is useful for representing the possible mappings in a compact manner, and can be generated efficiently. Moreover, it supports the evaluation of probabilistic twig query (PTQ), which returns the probability of portions of an XML document that match the query pattern. For users who are interested only in answers with k-highest probabilities, we also propose the top-k PTQ, and present an efficient solution for it. The second challenge we have tackled is to efficiently generate possible mappings for a given schema matching. While this problem can be solved by existing algorithms, we show how to improve the performance of the solution by using a divide-andconquer approach. An extensive evaluation on realistic datasets show that our approaches significantly improve the efficiency of generating, storing, and querying possible mappings. © 2010 IEEE.published_or_final_versionThe IEEE 26th International Conference on Data Engineering (ICDE 2010), Long Beach, CA., 1-6 March 2010. In International Conference on Data Engineering. Proceedings, 2010, p. 297-30
    • …
    corecore