1,080 research outputs found

    Automatic epilepsy detection using fractal dimensions segmentation and GP-SVM classification

    Get PDF
    Objective: The most important part of signal processing for classification is feature extraction as a mapping from original input electroencephalographic (EEG) data space to new features space with the biggest class separability value. Features are not only the most important, but also the most difficult task from the classification process as they define input data and classification quality. An ideal set of features would make the classification problem trivial. This article presents novel methods of feature extraction processing and automatic epilepsy seizure classification combining machine learning methods with genetic evolution algorithms. Methods: Classification is performed on EEG data that represent electric brain activity. At first, the signal is preprocessed with digital filtration and adaptive segmentation using fractal dimensions as the only segmentation measure. In the next step, a novel method using genetic programming (GP) combined with support vector machine (SVM) confusion matrix as fitness function weight is used to extract feature vectors compressed into lower dimension space and classify the final result into ictal or interictal epochs. Results: The final application of GP SVM method improves the discriminatory performance of a classifier by reducing feature dimensionality at the same time. Members of the GP tree structure represent the features themselves and their number is automatically decided by the compression function introduced in this paper. This novel method improves the overall performance of the SVM classification by dramatically reducing the size of input feature vector. Conclusion: According to results, the accuracy of this algorithm is very high and comparable, or even superior to other automatic detection algorithms. In combination with the great efficiency, this algorithm can be used in real-time epilepsy detection applications. From the results of the algorithm's classification, we can observe high sensitivity, specificity results, except for the Generalized Tonic Clonic Seizure (GTCS). As the next step, the optimization of the compression stage and final SVM evaluation stage is in place. More data need to be obtained on GTCS to improve the overall classification score for GTCS.Web of Science142449243

    Optimal load shedding for microgrids with unlimited DGs

    Get PDF
    Recent years, increasing trends on electrical supply demand, make us to search for the new alternative in supplying the electrical power. A study in micro grid system with embedded Distribution Generations (DGs) to the system is rapidly increasing. Micro grid system basically is design either operate in islanding mode or interconnect with the main grid system. In any condition, the system must have reliable power supply and operating at low transmission power loss. During the emergency state such as outages of power due to electrical or mechanical faults in the system, it is important for the system to shed any load in order to maintain the system stability and security. In order to reduce the transmission loss, it is very important to calculate best size of the DGs as well as to find the best positions in locating the DG itself.. Analytical Hierarchy Process (AHP) has been applied to find and calculate the load shedding priorities based on decision alternatives which have been made. The main objective of this project is to optimize the load shedding in the micro grid system with unlimited DG’s by applied optimization technique Gravitational Search Algorithm (GSA). The technique is used to optimize the placement and sizing of DGs, as well as to optimal the load shedding. Several load shedding schemes have been proposed and studied in this project such as load shedding with fixed priority index, without priority index and with dynamic priority index. The proposed technique was tested on the IEEE 69 Test Bus Distribution system

    Efficient Implementation and Design of A New Single-Channel Electrooculography-based Human-Machine Interface System

    Get PDF
    published_or_final_versio
    corecore