295 research outputs found

    Compressing Recurrent Neural Networks with Tensor Ring for Action Recognition

    Full text link
    Recurrent Neural Networks (RNNs) and their variants, such as Long-Short Term Memory (LSTM) networks, and Gated Recurrent Unit (GRU) networks, have achieved promising performance in sequential data modeling. The hidden layers in RNNs can be regarded as the memory units, which are helpful in storing information in sequential contexts. However, when dealing with high dimensional input data, such as video and text, the input-to-hidden linear transformation in RNNs brings high memory usage and huge computational cost. This makes the training of RNNs unscalable and difficult. To address this challenge, we propose a novel compact LSTM model, named as TR-LSTM, by utilizing the low-rank tensor ring decomposition (TRD) to reformulate the input-to-hidden transformation. Compared with other tensor decomposition methods, TR-LSTM is more stable. In addition, TR-LSTM can complete an end-to-end training and also provide a fundamental building block for RNNs in handling large input data. Experiments on real-world action recognition datasets have demonstrated the promising performance of the proposed TR-LSTM compared with the tensor train LSTM and other state-of-the-art competitors.Comment: 9 page

    Learning Compact Recurrent Neural Networks with Block-Term Tensor Decomposition

    Full text link
    Recurrent Neural Networks (RNNs) are powerful sequence modeling tools. However, when dealing with high dimensional inputs, the training of RNNs becomes computational expensive due to the large number of model parameters. This hinders RNNs from solving many important computer vision tasks, such as Action Recognition in Videos and Image Captioning. To overcome this problem, we propose a compact and flexible structure, namely Block-Term tensor decomposition, which greatly reduces the parameters of RNNs and improves their training efficiency. Compared with alternative low-rank approximations, such as tensor-train RNN (TT-RNN), our method, Block-Term RNN (BT-RNN), is not only more concise (when using the same rank), but also able to attain a better approximation to the original RNNs with much fewer parameters. On three challenging tasks, including Action Recognition in Videos, Image Captioning and Image Generation, BT-RNN outperforms TT-RNN and the standard RNN in terms of both prediction accuracy and convergence rate. Specifically, BT-LSTM utilizes 17,388 times fewer parameters than the standard LSTM to achieve an accuracy improvement over 15.6\% in the Action Recognition task on the UCF11 dataset.Comment: CVPR201

    Tensor Decomposition for Model Reduction in Neural Networks: A Review

    Full text link
    Modern neural networks have revolutionized the fields of computer vision (CV) and Natural Language Processing (NLP). They are widely used for solving complex CV tasks and NLP tasks such as image classification, image generation, and machine translation. Most state-of-the-art neural networks are over-parameterized and require a high computational cost. One straightforward solution is to replace the layers of the networks with their low-rank tensor approximations using different tensor decomposition methods. This paper reviews six tensor decomposition methods and illustrates their ability to compress model parameters of convolutional neural networks (CNNs), recurrent neural networks (RNNs) and Transformers. The accuracy of some compressed models can be higher than the original versions. Evaluations indicate that tensor decompositions can achieve significant reductions in model size, run-time and energy consumption, and are well suited for implementing neural networks on edge devices.Comment: IEEE Circuits and Systems Magazine, 202

    Low Rank Optimization for Efficient Deep Learning: Making A Balance between Compact Architecture and Fast Training

    Full text link
    Deep neural networks have achieved great success in many data processing applications. However, the high computational complexity and storage cost makes deep learning hard to be used on resource-constrained devices, and it is not environmental-friendly with much power cost. In this paper, we focus on low-rank optimization for efficient deep learning techniques. In the space domain, deep neural networks are compressed by low rank approximation of the network parameters, which directly reduces the storage requirement with a smaller number of network parameters. In the time domain, the network parameters can be trained in a few subspaces, which enables efficient training for fast convergence. The model compression in the spatial domain is summarized into three categories as pre-train, pre-set, and compression-aware methods, respectively. With a series of integrable techniques discussed, such as sparse pruning, quantization, and entropy coding, we can ensemble them in an integration framework with lower computational complexity and storage. Besides of summary of recent technical advances, we have two findings for motivating future works: one is that the effective rank outperforms other sparse measures for network compression. The other is a spatial and temporal balance for tensorized neural networks

    Enhancing Deep Learning Models through Tensorization: A Comprehensive Survey and Framework

    Full text link
    The burgeoning growth of public domain data and the increasing complexity of deep learning model architectures have underscored the need for more efficient data representation and analysis techniques. This paper is motivated by the work of (Helal, 2023) and aims to present a comprehensive overview of tensorization. This transformative approach bridges the gap between the inherently multidimensional nature of data and the simplified 2-dimensional matrices commonly used in linear algebra-based machine learning algorithms. This paper explores the steps involved in tensorization, multidimensional data sources, various multiway analysis methods employed, and the benefits of these approaches. A small example of Blind Source Separation (BSS) is presented comparing 2-dimensional algorithms and a multiway algorithm in Python. Results indicate that multiway analysis is more expressive. Contrary to the intuition of the dimensionality curse, utilising multidimensional datasets in their native form and applying multiway analysis methods grounded in multilinear algebra reveal a profound capacity to capture intricate interrelationships among various dimensions while, surprisingly, reducing the number of model parameters and accelerating processing. A survey of the multi-away analysis methods and integration with various Deep Neural Networks models is presented using case studies in different application domains.Comment: 34 pages, 8 figures, 4 table
    • …
    corecore