737 research outputs found

    Pakkausmenetelmät hajautetussa aikasarjatietokannassa

    Get PDF
    Rise of microservices and distributed applications in containerized deployments are putting increasing amount of burden to the monitoring systems. They push the storage requirements to provide suitable performance for large queries. In this paper we present the changes we made to our distributed time series database, Hawkular-Metrics, and how it stores data more effectively in the Cassandra. We show that using our methods provides significant space savings ranging from 50 to 90% reduction in storage usage, while reducing the query speeds by over 90\% compared to the nominal approach when using Cassandra. We also provide our unique algorithm modified from Gorilla compression algorithm that we use in our solution, which provides almost three times the throughput in compression with equal compression ratio.Hajautettujen järjestelmien yleistyminen on aiheuttanut valvontajärjestelmissä tiedon määrän kasvua, sillä aikasarjojen määrä on kasvanut ja niihin talletetaan useammin tietoa. Tämä on aiheuttanut kasvavaa kuormitusta levyjärjestelmille, joilla on ongelmia palvella kasvavia kyselyitä Tässä paperissa esittelemme muutoksia hajautettuun aikasarjatietokantaamme, Hawkular-Metricsiin, käyttäen hyödyksi tehokkaampaa tiedon pakkausta ja järjestelyä kun tietoa talletetaan Cassandraan. Nopeutimme kyselyjä lähes kymmenkertaisesti ja samalla pienensimme levytilavaatimuksia aineistosta riippuen 50-95%. Esittelemme myös muutoksemme Gorilla pakkausalgoritmiin, jota hyödynnämme tulosten saavuttamiseksi. Muutoksemme nopeuttavat pakkaamista melkein kolminkertaiseksi alkuperäiseen algoritmiin nähden ilman pakkaustehon laskua

    POOR MAN’S TRACE CACHE: A VARIABLE DELAY SLOT ARCHITECTURE

    Get PDF
    We introduce a novel fetch architecture called Poor Man’s Trace Cache (PMTC). PMTC constructs taken-path instruction traces via instruction replication in static code and inserts them after unconditional direct and select conditional direct control transfer instructions. These traces extend to the end of the cache line. Since available space for trace insertion may vary by the position of the control transfer instruction within the line, we refer to these fetch slots as variable delay slots. This approach ensures traces are fetched along with the control transfer instruction that initiated the trace. Branch, jump and return instruction semantics as well as the fetch unit are modified to utilize traces in delay slots. PMTC yields the following benefits: 1. Average fetch bandwidth increases as the front end can fetch across taken control transfer instructions in a single cycle. 2. The dynamic number of instruction cache lines fetched by the processor is reduced as multiple non contiguous basic blocks along a given path are encountered in one fetch cycle. 3. Replication of a branch instruction along multiple paths provides path separability for branches, which positively impacts branch prediction accuracy. PMTC mechanism requires minimal modifications to the processor’s fetch unit and the trace insertion algorithm can easily be implemented within the assembler without compiler support

    Summarizing multiprocessor program execution with versatile, microarchitecture-independent snapshots

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 131-137).Computer architects rely heavily on software simulation to evaluate, refine, and validate new designs before they are implemented. However, simulation time continues to increase as computers become more complex and multicore designs become more common. This thesis investigates software structures and algorithms for quickly simulating modern cache-coherent multiprocessors by amortizing the time spent to simulate the memory system and branch predictors. The Memory Timestamp Record (MTR) summarizes the directory and cache state of a multiprocessor system in a compact data structure. A single MTR snapshot is versatile enough to reconstruct the microarchitectural state resulting from various coherence protocols and cache organizations. The MTR may be quickly updated by each simulated processor during a fast-forwarding phase and optionally stored off-line for reuse. To fill large branch prediction tables, we introduce Branch Predictor-based Compression (BPC) which compactly stores a branch trace so that it may be used to fill in any branch predictor structure. An entire BPC trace requires less space than single discrete predictor snapshots, and it may be decompressed 3-6x faster than performing functional simulation.by Kenneth C. Barr.Ph.D

    Exploring Superpage Promotion Policies for Efficient Address Translation

    Get PDF
    Address translation performance for modern applications depends heavily upon the number of translation entries cached in the hardware TLB (translation look-aside buffer). Therefore, the efficiency of address translation relies directly on the TLB hit rate. The number of TLB entries continues to fall further behind the growth of memory consumption for modern applications. Superpages, which are pages with larger sizes, can increase the efficiency of the TLB by enabling each translation entry to cover a larger memory region. Without requiring more TLB entries, using superpages can increase the TLB hit rate and benefit address translation. However, using superpages can bring overhead. The TLB uses a single dirty bit to mark a page as dirty during address translation before modifying the page, so the granularity of the dirty bit corresponds to the coverage of the translation entry. As a result, the OS (operating system) will pay extra I/O effort when it allocates or writes an underutilized superpage back to disk. Such extra overhead can easily surpass the address translation benefits of superpages. This thesis discusses the performance trade-offs of superpages by exploring the design space of superpage promotion policies in the OS. A data collection infrastructure is built based on QEMU with kernel instrumentation on FreeBSD to collaboratively collect both memory accesses and kernel events. Then, the TLB behavior of Intel Skylake x86 family processors is simulated. The simulation has been validated to be faithful and consistent with the real-world performance. Last, this thesis evaluates and compares both TLB performance benefits and I/O overheads among the superpage promotion policies to discuss the trade-offs in the design space

    Valuing alternative bundles of landscape attributes: Cost-benefit analysis for the selection of optimal landscapes

    Get PDF
    The role of landscape valuation and extended cost-benefit analysis inlandscape conservation decision-making is first addressed. It is stressed that substantial research on how to value alternative conservation schemes is required, in order to cope with emerging policy needs. An analytical frame for the valuation of alternative landscape conservation schemes is then discussed. This frame enablesthe analyst to sequentially disaggregate values for whole landscape changes over attributes. This is an essential operation if the optimal bundle of landscape attributes is to be selected by cost-benefit analysis. The concept of substitution between landscape attributes plays an essential role within the whole analytical frame. The circumstances that lead to anticipate substitution between landscape attributes are explored. A brief review of the alternative empirical strategies for landscape valuation is then carried out, to check whether they permit sequential desegregation of landscape value over attributes. Next, an empirical application to the valuation of landscape attribute changes in the Pennine Dales Environmentally Sensitive Area is presented. The empirical results confirm the idea of the prevalence of substitution in valuation in most practical contexts. To illustrate the potential of the proposed approach, a sequential cost-benefit analysis of attribute changes along consistent paths of aggregation is then carried out – which eventually leads to the selection of optimal bundles of landscape attributes. Some problems and limitations of the approach are also discussed. Among them, the question of non-uniqueness, or path dependency of the optimum is given particular consideration
    corecore